
SPL USER MANUAL

SMART BUILDING SOLUTIONSSMART BUILDING SOLUTIONS

SPL User Manual

Part Number 1E-04-00-0083

Updated 3/16/2007

© 2007 American Auto-MatrixTM

This document is protected by copyright and is the property of American Auto-Matrix. It may not be used or
copied in whole or in part for any purpose other than that for which it is supplied without authorization. This
document does not constitute any warranty, expressed or implied.

Every effort has been made to ensure that all information was correct at the time of publication. American
Auto-Matrix reserves the right to alter specifications, performance, capabilities and presentation of this
product at any time.

American Auto-Matrix and Auto-Matrix are trademarks of American Auto-Matrix and are not to be used for
publication without the written consent of American Auto-Matrix.

All other brand names or product names are trademarks or registered trademarks of their respective com-
panies or organizations.

WORLD HEADQUARTERS

American Auto-Matrix
One Technology Lane
Export, Pennsylvania 15632-8903 USA
Tel (1) 724-733-2000
Fax (1) 724-327-6124
Email aam@aamatrix.com
www.aamatrix.com

REVISION HISTORY

SPL User Manual (3/16/2007)

Updated 3/16/2007
 Document uses new date revision scheme for Technical Documentation
 §2.3.2 - Added EQU Statement and expression examples
 §3.4.2 - Fixed BACnet statement expression examples
 §Appendix E - Change header for BACnet Data Types from “Number” to “Identifier Number”

Version 2.1
 Fixed various SPL sample errors found by Tech Services (various pages in manual)
 Updated SPL Error Code Appendixes (Appendix B and Appendix C)
 Re-wrote SPL and BACnet section (Section 3) to provide better understanding of how to write SPL

programs for NB-GPC Product Family devices.
 Fixed BACnet SPL Reference Tables (Appendix E) to reflect the correct Object References for NB-

GPC family devices.
 Updated DREF Statement (Section 2.4.1)
 Updated Program Control Attributes (Section 2.15)
 Updated Overview Section which discusses Compiler Control Statements

Version 2.0 - Initial Manual Re-Release

REVISION HISTORY

iv SPL User Manual (3/16/2007)

TABLE OF CONTENTS

iii

1.1 Introduction ...1-3
1.2 The Parts of SPL Programs ..1-4
1.3 Program Names..1-5
1.4 The .SPL, .PLB and .LST Files ...1-6
1.5 The Program Reference Block (PRB) ...1-7
1.6 The Initial Value (INI) File..1-8
1.7 Attributes and Registers..1-9
1.8 Compiler Control Statements ..1-10
1.9 Comments...1-13
1.10 Labels..1-14
1.11 Expressions...1-15
1.12 Constants ..1-17
1.13 Named Constants ...1-19
1.14 Registers ...1-22
1.15 Program Attributes ...1-23
1.16 Named Object Attributes ..
(SAGE)..1-24
1.17 Named PUP Object Attributes... (GX,
DX, GPC) ..1-25

1.17.1 Named BACnet Object Properties (GPC)1-25
1.18 Tables (SAGE)..1-26

1.18.1 RAM-based Tables..1-26
1.19 Functions...1-28
1.20 Expression Operators ...1-35
2.1 Introduction ...2-3
2.2 Working with Attributes ...2-5

2.2.1 ATTR Statement..2-5
2.2.2 TABLE and DATA Statements ..2-5
2.2.3 SAVE Statement (SAGE)..2-6

2.3 Assignment Statements and Equates ...2-8
2.3.1 Standard Value assignment ..2-8
2.3.2 EQU...2-9

2.4 References..2-10
2.4.1 DREF Statement ...2-10
2.4.2 REF Statement..2-10

2.5 Virtual Attributes..2-11
2.6 Iteration, Branching and Subroutines..2-12

2.6.1 GOTO statement ...2-12
2.6.2 IF... THEN... {ELSE...} Statement ...2-12
2.6.3 ON... GOTO... statement...2-13
2.6.4 LOOP Statement ...2-13
2.6.5 GOSUB Statement ..2-14
2.6.6 CALL Statement ..2-14
2.6.7 RETURN Statement ..2-15

2.7 Program Delays ..2-16
2.7.1 SWAIT and MWAIT Statements..2-16

TABLE OF CONTENTS

iv

2.7.2 WAIT Statement..2-16
2.8 Printing, Logging, and Alarms...2-17

2.8.1 PRINT Statement (SAGE)...2-17
2.8.2 LOG Statement (SAGE)..2-19
2.8.3 ALARM Statement ..2-20

2.9 Job Execution (SAGE)..2-22
2.9.1 The REPORT Job ...2-22
2.9.2 The SPOOL Job..2-25
2.9.3 The DATA CAPTURE /DATA STUFF Job2-27

2.10 Spooling Report and Log Files (SAGE) ..2-35
2.10.1 SPOOL Statement ..2-35

2.11 Trending Control Statements (SAGE)...2-36
2.11.1 STARTTREND & STOPTREND Statements2-36

2.12 Program Execution Statements (SAGE)...2-37
2.12.1 ACTIVATE Statement ...2-37
2.12.2 DEACTIVATE Statement ..2-37
2.12.3 The RESTART Statement...2-37
2.12.4 STOP Statement ...2-38
2.12.5 UNLOAD Statement..2-38

2.13 Execution Error Control...2-40
2.13.1 ERRORABORT Statement ...2-40
2.13.2 ERRORWAIT Statement...2-40
2.13.3 ONERROR Statement ..2-41

2.14 Debugging Statements ...2-42
2.14.1 SECTION Statement...2-42
2.14.2 NOP Statement ...2-42

2.15 Program Control Attributes ...2-43
3.1 Introduction ...3-3
3.2 Fundamentals of SPL in BACnet ..3-4

3.2.1 The PROP Statement ...3-4
3.2.2 Prop Statement Examples ..3-4

3.3 Working with Object Properties...3-6
3.3.1 Referencing Objects..3-6
3.3.2 Referencing Properties ...3-6
3.3.3 Addressing Object Properties ...3-6
3.3.4 Addressing User-Defined properties ...3-7
3.3.5 Peer-To-Peer Addressing ...3-7
3.3.6 Writing Values to Object Properties ..3-8
3.3.7 Data Type Sensitivity with BACnet SPL....................................3-10
3.3.8 EQU Function Limitations in BACnet SPL3-10

3.4 Advanced BACnet SPL Functions ..3-11
3.4.1 The OID Function..3-11
3.4.2 The BACNET Statement ...3-11

A.1 Introduction...A-3
A.2 ACTIVATE..A-5
A.3 ALARM ...A-5

TABLE OF CONTENTS

v

A.4 ATTR ..A-5
A.5 BACNET ...A-6
A.6 CALL...A-6
A.7 DATA ..A-7
A.8 DEACTIVATE ...A-7
A.9 DREF..A-7
A.10 ERRORABORT ..A-8
A.11 ERRORWAIT..A-8
A.12 GOSUB...A-8
A.13 GOTO ...A-9
A.14 IF... THEN... {ELSE...} ..A-9
A.15 JOB...A-9

A.15.1 REPORT Job ..A-9
A.15.2 SPOOL Job...A-10
A.15.3 BROADCAST (BC) Job ..A-10
A.15.4 DATA CAPTURE/DATA STUFF JobA-10
A.15.5 UPLOAD/DOWNLOAD Job ..A-11
A.15.6 EXPORT Job ..A-11

A.16 LOG ..A-12
A.17 LOOP..A-12
A.18 MWAIT..A-12
A.19 NOP..A-13
A.20 OID ...A-13
A.21 ON... GOTO..A-13
A.22 ONERROR ...A-14
A.23 PRINT...A-14
A.24 PROP..A-14
A.25 RESTART...A-15
A.26 RETURN...A-15
A.27 SAVE ..A-15
A.28 SECTION..A-16
A.29 SPOOL ...A-16
A.30 STARTTREND..A-16
A.31 STOP..A-17
A.32 STOPTREND..A-17
A.33 SWAIT ..A-17
A.34 TABLE ..A-18
A.35 UNLOAD...A-18
A.36 WAIT...A-18
E.1 BACnet Data Types..E-1
E.2 BACnet Objects ..E-2
E.3 Property Identifiers..E-4

TABLE OF CONTENTS

vi

 SPL User Manual (3/16/2007) 1-1

IN THIS SECTION

SECTION 1: OVERVIEW

Introduction... 1-3
The Parts of SPL Programs.. 1-4
Program Names ... 1-5
The .SPL, .PLB and .LST Files................................... 1-6
The Program Reference Block (PRB)......................... 1-7
The Initial Value (INI) File ... 1-8
Attributes and Registers ... 1-9
Compiler Control Statements.................................... 1-10
Comments .. 1-13
Labels ... 1-14
Expressions .. 1-15

Constants ... 1-17
Named Constants... 1-19
Registers .. 1-22
Program Attributes .. 1-23
Named Object Attributes (SAGE)............................. 1-24
Named PUP Object Attributes (GX, DX, GPC) 1-25
Tables (SAGE).. 1-26
Functions.. 1-28
Expression Operators... 1-35

SECTION 1: OVERVIEW

1-2 SPL User Manual (3/16/2007)

SECTION 1: OVERVIEW INTRODUCTION

SPL User Manual (3/16/2007) 1-3

1.1 INTRODUCTION
Historically the large number of REX Program Language (RPL) programs which exist for RCU and STAR,
and the general familiarity with RPL among end-users, led to the enhancement of the RPL language for
SAGE application programming. The resulting extended language was called SAGE Programming
Language (SPL). This language has since been extended first for SOLO/DX and SOLO/GX, and now
again to accommodate BACnet programming concepts.

Overall, the language supports a large number of features, summarized below:

 Unlimited number of program lines up to maximum pcode size
 Extension in pcode size to 64K bytes.
 Up to 255 program attributes
 Indirect references within the program up to 256 references
 Floating point math and type coercion
 Access to lookup tables for scaling, conversion and general purpose storage in programs
 Job execution including Report Generation
 Formatted printing
 Ability of printing to a log disk file for batch report generation and printing
 Standard function blocks such as PID that are usable by multiple programs
 Re-entrant subroutine calling ability for multiple programs
 Up to sixteen (16) program registers capable of 32 bit values and data type
 Six (6) Level expression stack to resolve nested expressions
 Asynchronous read/write of named object attributes
 Emulation of BACnet Program Objects
 Asynchronous read/write of BACnet object properties
 Support for BACnet object properties in addition to attributes

THE PARTS OF SPL PROGRAMS SECTION 1: OVERVIEW

1-4 SPL User Manual (3/16/2007)

1.2 THE PARTS OF SPL PROGRAMS
Application programs that run in the SAGE, SOLO/DX, SOLO/GX and GPC controllers are written in SPL.
An SPL program consists of a collection of structures that are used by the SPL compiler and execution
system. An SPL program consists of the following items:

 a program name
 a Program Logic Block (PLB) file
 an optional Program Reference Block (PRB) file
 an optional attribute Initial Value (INI) file
 program attributes and registers
 an Engineering Units (EU) override file
 a set of program options

These components are explained in the following sections of this chapter.

SECTION 1: OVERVIEW PROGRAM NAMES

SPL User Manual (3/16/2007) 1-5

1.3 PROGRAM NAMES
SPL programs must have an associated name that is limited only by the operating system. The valid
characters for program names are shown below:

 A-Z (uppercase letters “A” through “Z”)
 a-z (lowercase letters “a” through “z”)
 0-9 (numbers “0” through “9”)
 _ (under bar)
 (space)
 . (period)
 $ (dollar sign)

Program names are case-insensitive, meaning lowercase letters are treated the same as uppercase
letters in program object names (e.g., "abc" is the same as "ABC").

THE .SPL, .PLB AND .LST FILES SECTION 1: OVERVIEW

1-6 SPL User Manual (3/16/2007)

1.4 THE .SPL, .PLB AND .LST FILES
SPL programs must reference a Program Logic Block (PLB). The PLB is a binary data file that contains
compiled binary pseudocode in a form which can be executed by the controller. This file is created by the
SPL Compiler after you create, edit and compile an ASCII text file (i.e., an SPL source file) which contains
program logic statements that are easily edited and understood by programmers.

ASCII SPL source code files have the .spl extension and Binary Program Logic Block files (PLBs) have the
.plb extension.

The name given to the SPL file can be as long as allowed by the operating system on your computer.
However, the controllers impose a limitation on file length. When a PLB is loaded into a SAGE of a unitary
controller, the file name is shortened to 8 characters. If the name was originally longer, only the first 8
characters will be used for the program name.

The source file contains SPL program logic statements which are discussed in detail later in this section.
SPL source code can be created and/or edited by using the SPL editor built in to the NB-Pro and SoloPro
software packages, any unformatted text editor, or the Program Editor in the SAGEMAX. The number of
lines in an SPL source file is unlimited.

The source code that you create in ASCII form is converted to a binary pseudocode file (the PLB) by the
SPL compiler. Compiled PLBs cannot exceed 65,535 bytes in size.

You may choose to have the SPL Compilers optionally create a list file during the compile process. The
list file is an ASCII text file that contains the source code statements along with the pseudocode and their
respective relative locations in memory and any error messages generated by the compiler. List files are
useful in debugging the execution of SPL programs. List files have the same name as the SPL source file
except that they have the extension .lst and are found on the C:\SPL subdirectory of the SAGEMAX.

NOTE
If any errors are generated during the com-
piling process, a PLB is not created.

NOTE
The LST file does not point out execution or
logic errors in your program logic. Only syn-
tax errors (errors due to the improper con-
struction or format of program statements)
are flagged by the compiler and shown in
the list file.

SECTION 1: OVERVIEW THE PROGRAM REFERENCE BLOCK (PRB)

SPL User Manual (3/16/2007) 1-7

1.5 THE PROGRAM REFERENCE BLOCK (PRB)
SPL programs may contain an optional Program Reference Block (PRB) file. PRBs allow programs to
refer to named objects indirectly so that the actual object names do not need to be used in the program
logic statements. This allows many different program objects to share the same PLB.

If a PLB uses references as part of its logic, the associated program object must contain a PRB. The PRB
is an ASCII text file that specifies the object name/reference association.

Each reference in the PRB text file must be on a separate line and must adhere to a specific format so that
it may be recognized by the SAGEMAX. References must contain the object name to be referenced, and
may optionally contain the object type code (i.e., PT, PG, VR, GL) and/or an attribute. Indices into the PRB
are zero-based (e.g., reference 0 is the first reference). The four formats for PRB references are shown
below:

 \ objecttype \ objectname ; attribute
 objectname ; attribute
 \ objecttype \ objectname
 objectname

The objecttype is a two character mnemonic (PT, VR, GL, PG, etc.). If missing, the correct type will be
determined by a search of all object types

If no object type is specified in a reference, then the SAGEMAX searches all object types in its database for
the first object name that matches. This search is performed in the following order: Points, Programs,
Variables, and Globals.

THE INITIAL VALUE (INI) FILE SECTION 1: OVERVIEW

1-8 SPL User Manual (3/16/2007)

1.6 THE INITIAL VALUE (INI) FILE
A third component of an SPL program is an attribute Initial Value File or INI file. This optional ASCII text
file is used to set program attributes to initial values at the start of program execution. If a program
attribute is not listed in the INI File, the attribute is initialized to zero. If no INI file is specified for a program,
all its program attributes are initialized to zero. SPL provides mechanisms that can be used to save new
initial values to this file. Programs with the same attributes that have the same initial values may share the
same Initial Value File.

SECTION 1: OVERVIEW ATTRIBUTES AND REGISTERS

SPL User Manual (3/16/2007) 1-9

1.7 ATTRIBUTES AND REGISTERS
All programs have 16 registers (%A-%P) and a number of program control attributes (or properties for
BACnet controllers) depending on the platform being used. To an operator, program registers always
begin with a percent sign (%) and program control attributes always begin with a dollar sign ($). Up to 255
additional two-character attributes can be defined for every program.

On a SAGE, program registers, program control attributes and user-defined program attributes can be
accessed from the Monitor Program Submenu by qualified users. The first user-defined program attribute
is the default attribute. If no user-defined program attributes are specified in the program, the $$ program
control attribute is displayed as the default when you monitor the program object.

COMPILER CONTROL STATEMENTS SECTION 1: OVERVIEW

1-10 SPL User Manual (3/16/2007)

1.8 COMPILER CONTROL STATEMENTS
Compiler control statements are non-executable directives to the SPL compiler that it uses to control the
generation and format of SPL compiler listings and PLBs. The various SPL compiler control statements
are summarized below:

#NOLIST
#TITLE "titletext"
#PAGE length,width
#NOLABELS
#LABELS
#FIXED
#FLOAT
#SAGE
#SOLODX
#SOLOGX
#GPC
#PLB08K, #PLB16K, #PLB64K
#ONESEC
#ENDONESEC

Compiler control statements always begin with the pound sign character (#). They must begin in the left-
most column.

#NOLIST

The no listing command is used if suppression of a compiler list file is desired. Unless otherwise directed
by this command, the SPL compiler generates a companion list file sourcefilename.LST from the
designated SPL program logic source file. The compiler always generates a PLB from the source file. If
the #NOLIST command is used, it must be on the first line of the source file.

#TITLE "titletext"

The title directive is used to put the specified titletext at the top of each page of a compiler list file in order
to help identify the program logic. The text string titletext must be enclosed in double quotation marks (")
and can be up to 79 characters long.

#PAGE length,width
#PAGE

The page control commands direct the SPL compiler to set the maximum number of characters per line in
the listing file to width and the maximum number of lines per page to length. When the page control
command is used without arguments, a new page is started in the compiler listing by writing a form-feed
character to the list file.

#NOLABELS
#LABELS

The no labels directive commands the SPL compiler to not generate pseudo-code for statement labels in
the PLB file. Using this command results in smaller, faster executing PLBs, but eliminates the ability to
visually locate labels in the PLB files during troubleshooting. The #LABELS command turns on the

SECTION 1: OVERVIEW COMPILER CONTROL STATEMENTS

SPL User Manual (3/16/2007) 1-11

inclusion of label pcodes in the PLB. In order to conserve RAM and optimize execution, #NOLABELS is
the default for #SOLODX, #SOLOGX and #GPC. #LABELS remains the default for #SAGE. The inclusion
of label pcodes can be turned on/off throughout the SPL source file.

#FIXED

The fixed data type directive commands the SPL compiler to generate a fixed point data type when it
encounters a number with a decimal point, e.g., 1.234. The data type is determined by the number of digits
and whether a sign is included. So, 1.234 results in a data type 0F8H and -1.23 results in a data type
0FBH. Note that numbers that are expressed in exponent form, e.g., 1.2E-2 always result in floating point
data types.

#FLOAT

The floating point data type directive commands the SPL compiler to generate a floating point data type
when it encounters a number with a decimal point, e.g., 1.234.

The default mode is #FIXED.

#SAGE
#SOLODX
#SOLOGX
#GPC

The #SAGE, #SOLODX, #SOLOGX and #GPC commands identify the target platform for the resulting
Program Logic Block (PLB). A summary of statements, terms, operators and features supported by the
compiler for each target is shown in Table 1-1. The #SAGE, #SOLODX, #SOLOGX and #GPC commands
can appear any place in the SPL source file, but it is recommended that they appear early in the source
file, i.e., directly after the #NOLIST and/or #PLBxx commands if they are included. If no target option is
used, #SAGE target option is used as the default.

When it executes, the SPL compiler requires a block of RAM in addition to what the executable SPL
module uses. The additional block is used to build the PLB. The amount required depends on the
maximum anticipated size of the PLB. The #PLB08K, #PLB16K and #PLB64K commands set the
maximum size of the PLB generated by the SPL compiler at 8192-x, 16384-x and 65535-x bytes
respectively (where x = 142 bytes). Using #PLB08K or #PLB16K when it is known that the PLB is less
than 8k bytes and 16k bytes allocates smaller amounts of RAM from the free-space list in the SAGE-
resident version the SPL compiler and allows the PC-based version to execute in a smaller amount of
RAM. If present, the #PLBxx statement must be on the second line of the source file if there is a #NOLIST
command, otherwise it must be on the very first line. There can be no comment lines prior to the #NOLIST
and/or #PLBxx statements. #PLB64K is the default if there are no #PLBxx commands. Unless the
program size is known to be greater than 8K, you should use #PLB08K at the beginning of every #SAGE
based program.

NOTE
When writing a program for a GC1
controller, the #SOLOGX command should
be used to specify the target platform.

COMPILER CONTROL STATEMENTS SECTION 1: OVERVIEW

1-12 SPL User Manual (3/16/2007)

#ONESEC
#ENDONESEC

The #ONESEC and #ENDONESEC statements are valid only for #SOLOGX and #GPC. They are used to
define the extent of a once-a-second routine for use during program execution. There can be at most a
single pair of #ONESEC/#ENDONESEC statements per SPL source. If the #ONESEC statement is
present and the #ENDONESEC statement is not, then the once-a-second routine is assumed to extend to
the end of the PLB. There is a set of eight general purpose 32-bit registers (A-H) available for use inside
the once-a-second routine. In the #SOLOGX, these registers named A-H, are a separate set from the
main program registers (A-P). The #ONESEC command causes the SPL compiler to make an entry in the
PLB header identifying the starting offset of the once-a-second routine for use by the SPL program
executor. It also causes the complier to add a STOP pcode directly preceding the #ONESEC statement.
The #ENDONESEC statement causes the SPL compiler to automatically insert a RETURN pcode directly
preceding it.

Table Table 1-1 shows which compiler control statements are compatible with the different target
platforms.

Table 1-1 Compiler Control Statements

Statement SAGE DX GX GPC

#ENDONESEC

#FIXED

#FLOAT

#LABELS

#NOLABELS

#NOLIST

#ONESEC

#PAGE length,width

#PLB08K

#PLB16K

#PLB64K

#SAGE

#SOLODX

#SOLOGX

#GPC

#TITLE "titletext"

SECTION 1: OVERVIEW COMMENTS

SPL User Manual (3/16/2007) 1-13

1.9 COMMENTS
All lines in SPL programs that have a semicolon (;) in the leftmost column are comments. They are for
documentation purposes only and are ignored at compile time. The generous use of comment statements
within your programs will make them more readable and easier to troubleshoot, especially if you are not
the person doing the troubleshooting.

As a guideline, the top lines of programs should be reserved for program identification comments. This
area may contain information such as:

 the name of the program
 the date the program was written
 the name of the author
 what the program does
 the meaning/use of program attributes
 the meaning/use of program registers
 any assumptions made by the author
 any input variables used by the program
 any output values calculated by the program
 an edit trail indicating any modifications made to the program logic, when they were made, and by

whom
 in general, any information that may prove useful to someone looking at the program for the first time

In addition to using comments at the beginning of your program logic, it is also helpful to create a series of
comment lines prior to any program segments with logic that may need special explanation. The extra
effort you take in adding useful comments to your programs is well worth the benefits you (or someone
else) will reap in the future.

LABELS SECTION 1: OVERVIEW

1-14 SPL User Manual (3/16/2007)

1.10 LABELS
SPL programs are composed of one or more statements which define the actions and logical operations
that the program is to take when it is executed. SPL program statements are grouped into lines which
contain a single program statement. These lines may be labeled with symbolic names to identify them.
Typically this is done so that GOTO and other branching statements can refer to them.

Labels cannot use any of the reserved names that identify SPL statements. Labels are case-insensitive,
meaning that the label ABC is treated the same as the label ABc or abc. Labels must begin in the
leftmost column of the line. Labels may contain up to eight characters or up to eight characters and
numbers. Labels can consist of the following:

 A through Z
 a through z
 0 through 9 (not as the first character)
 $, . and _ characters.

Labels cannot begin with the numbers 0-9. If a line contains any statement following the label, then the
statement must be separated from the label by one or more TABs or spaces. Labels may optionally end
with a colon character (:), which is not counted in the length of the label.

The lines of an SPL program may be labeled with a symbolic name to identify that line, typically so that
GOTO and other branching statements can refer to it. Labels may be symbolic and numeric, or symbolic
and can be up to 8 characters long. Symbolic labels may not use any of the reserved names that identify
SPL statements.

The following program fragment demonstrates several labels:

C=\PT\TEMP2;CV
LABEL1

A=\PT\TEMP1;CV
B=A+3
IF B >32 THEN LABEL003
C=5

LABEL2: IF ZONE;CV>72 THEN LABEL003
SWAIT 30
GOTO LABEL2

SECTION 1: OVERVIEW EXPRESSIONS

SPL User Manual (3/16/2007) 1-15

1.11 EXPRESSIONS
Expressions are symbolic formulas which represent a chain of arithmetic calculations on data from various
sources. Expressions are used to convey values for parameters in many of the primitive statements in the
SPL language. SPL expressions can contain an arbitrary number of terms and operators which may
represent mixed mode arithmetic (i.e., integer, floating point and fixed point). SPL automatically performs
type coercion on mixed mode values.

Expression evaluation is performed from left to right. Up to six levels of nesting (i.e., the use of
parentheses) may be used in expressions to define an order or precedence for evaluation. The
expression within the innermost set of parentheses is evaluated first from left to right. This procedure
continues outward until the expression within the outermost set of parentheses is evaluated from left to
right.

Expressions may contain constants, variables, registers, named object attributes, references, tables, built-
in functions and arithmetic and logical operators.

In a very general sense, expressions are composed of terms and operators. In the simplest case, an
expression is simply a term with no operators. An expression is defined as follows:

 expression ::= term or
 expression ::= term operator expression

An expression may also be nested within parentheses and used as a term anywhere within an expression.
Up to six levels of parentheses may be used.

The syntax for a nested expression is shown below.

 (expression)

The evaluation of nested expressions occurs first from the innermost set of parentheses and continues
outward. Expressions that are at similar levels of nesting are simply evaluated from left to right.
The code below shows some complex SPL programming examples using nested expressions.

A=MAX(MEAN(B,C,D), MEAN(E,F,G))
H=SQRT((B**2)+(C**2))
;SV=((;MX-;MN)/255)*;CV+;MN

Because expressions may contain terms that are objects on networks, an expression does not necessarily
have to be completely resolved before execution is passed to another program. Such network accessing
is processed asynchronously, causing only the program using the value to be delayed until the value has
been fetched. This provides for a fair method in dealing with network-intensive programs, and not
penalizing other programs by waiting for a network device object value.

Terms in expressions may be one of several possible types, indicating one of several possible sources of
a value to be used during expression evaluation. In general, each term has a data type as well as a value.
Data types identify the way in which the values are represented numerically, and may imply additional
hidden operations or coercions to be performed when arithmetic operations are required between
dissimilar types. The types of terms that can be used in expressions are as follows:

EXPRESSIONS SECTION 1: OVERVIEW

1-16 SPL User Manual (3/16/2007)

 constants
 named terms
 registers
 program control attributes
 user-defined program attributes
 named object attributes
 BACnet object properties (BACnet controllers only)
 references
 virtual attributes
 tables
 functions
 nested expressions

Each type of expression term is explained in detail in the following sections.

SECTION 1: OVERVIEW CONSTANTS

SPL User Manual (3/16/2007) 1-17

1.12 CONSTANTS
Constants specify particular unique values implying a data type by their syntax. SPL supports five basic
types of syntax for entering constants: integer, fixed, float, time and explicit type.

Integer types can be expressed in decimal, binary or hexadecimal radix. Decimal numbers are a sequence
of one or more decimal digits, optionally preceded by a unary minus (-) which indicates twos complement
negation of the constant.

Hexadecimal (hex) numbers must be preceded with a leading zero if their most significant digit is A-F. Hex
constants end in the letter H or h to denote hexadecimal format. Binary constants end with the letter B or
b and use the digits 1 and 0.

The range of values for integer types is 0 to 4*109 for unsigned integers and -2*109 to 2*109 for signed
integers.

Examples of integer constants are:

Decimal: 2 27 -6
Hex: 03Eh 0FFH 2Ah

0x3E 0xFF 0x2A
Binary: 10001110B 11B0 10b

Float constants can be expressed in free form or in scientific notation. Float constants are distinguished
from similar integer constants by the presence of a decimal point (.) in the sequence of digits, and/or the
presence of the exponent indicator (E or e). The general form of float constants is ±ddd.dddE±ddd or
±ddd.ddd where ddd represents zero or more decimal digits, and the ± represents an optional plus sign or
minus sign. At least one decimal digit must be present before the decimal point. The range of float values
is from ±1.175494E-38 to 3.402823E+38 with 6-7 significant digits.

Since both fixed and float types can be expressed in free-form notation, the SPL compiler must be told
which of the two types to use when it encounters a constant with a decimal point. By default, all free-form
constants are fixed types and all scientific form constants are float types. The #FLOAT compiler command
can be used so that all free-form and scientific form constants are expressed as float types.

Examples of float constants are shown below:

Fixed: 1.6 1234.5678 -.45 -29.60.0 40.123456789

Note that integers are simply fixed types of the form ±ddd.

Float constants can be expressed in free-form or scientific notation. Float constants are distinguished from
similar integer constants by the presence of a decimal point '.' in the sequence of decimal digits, and/or the
presence of the exponent indicator 'E' in upper or lower case. So the general form of float constants is
±ddd.dddE±ddd where the ddd represents zero or more decimal digits, and the ± represents an optional
plus or minus sign. At least one digit must be present before or after the decimal point, but it is not required
to have a digit on both sides of the decimal point. Examples of float constants are:

CONSTANTS SECTION 1: OVERVIEW

1-18 SPL User Manual (3/16/2007)

Float: 1.6 1234.5678 -.45
29.6 0.04 1e6
102e3 0.45e-5 +39.
1.056e+10 12.E10

The range of float values is 8.43*10-37 to 3.37*1038 with 6-7 significant digits.

Time constants can be expressed in hours:minutes or hours:minutes:seconds forms. They are
distinguished from integer constants by the presence of the colon (:) in the string of decimal digits.
Examples of time constants are:

Short Time: 10:45 00:00 1:38
12:5 (means 12:05)

Long Time: 12:34:56 00:00:00 3:45:20
12:4:5 (means 12:04:05)

SECTION 1: OVERVIEW NAMED CONSTANTS

SPL User Manual (3/16/2007) 1-19

1.13 NAMED CONSTANTS
There are a number of constants which are given names and are recognized by the SPL compiler. These
named terms can be used as if they were constants anywhere that a term may be used. Named terms are
identified by reserved names in SPL and are explained in the following paragraphs. In the figures that
follow, sample SPL program segments are included to illustrate the use of the named terms. The
segments vary in their range of complexity.

TRUE and FALSE are named terms that represent the two logical states true and false. These named
terms are integer types with associated numeric values of 1 and 0 respectively. Program examples of
these named terms are shown below:

A = FALSE
Check: IF [MX_SEC1;V0] ==1 Then Merge
A = TRUE
IF [MX_SEC1;V1] ==0 Then Merge
A = TRUE
 :
Merge: IF NOT A Then Check

Table 1-2 Named Constants

Name Meaning Value or Range Type SAGE DX GX GPC

FALSE logical false state 0 integer

TRUE logical true state 1 integer

PI value of π 3.141593 float

DAY current day of month 1..31 integer

MONTH current month of year 1..12 integer

YEAR current year e.g. 1990 integer

DATE current date - date

DAYOFWEEK current day of week 0..6 (0=Monday) integer

DAYOFYEAR current julian day 1..366 integer

TIME current time 00:00:00..23:59:59 time

MON Monday 0 integer

TUE Tuesday 1 integer

WED Wednesday 2 integer

THU Thursday 3 integer

FRI Friday 4 integer

SAT Saturday 5 integer

SUN Sunday 6 integer

KE e 2.718287 float

CLEAN have autosave attrs.
changed 0..1 integer

NAMED CONSTANTS SECTION 1: OVERVIEW

1-20 SPL User Manual (3/16/2007)

PI is a named term that represents the irrational value of pi (π). This constant is the ratio of the
circumference of any circle to its radius and is approximated in the SAGEMAX by using the floating point
value 3.141593. An example of a program using the named term PI is shown below:

A=9.0E0 Output: A = 9.0 (the radius of the duct)
B=PI*(A*A) B = 254.469 (the area of the duct)

DAY is a named term that represents the current day of the current month as an integer from 1-31.

MONTH is a named term that represents the current month of the year as an integer from 1-12.

YEAR is a named term that represents the current year as an integer, e.g., 2005.

DATE is a named term that represents the current date (e.g., JAN 1, 2005).

The example below shows the DAY, MONTH, YEAR and DATE named terms and an SPL programming
example using DAY and MONTH:

START: WAIT MONTH == 7
WAIT DAY == 4
CALL HLDY\JULY4TH
WAIT DAY <> 4
GOTO START

DAYOFWEEK is a named term that represents the current day of the week as an integer from 0-6. The
value 0 refers to Monday, 1 refers to Tuesday, etc.

If (DAYOFWEEK==SAT) OR (DAYOFWEEK==SUN) Then WKND Else L2
WKND: Call WEEK_END
L2:

DAYOFYEAR is a named term that represents the current Julian day of the current year as an integer from
1-366. A simple SPL program segment using the named term DAYOFYEAR is shown below:

A = ((DAYOFYEAR-1) / 7)+1

TIME is a named term that represents the current time in long time format (HH:MM:SS) from 00:00:00-
23:59:59. A simple SPL program segment using the named term TIME is shown below:

WAIT TIME == 23:00:00
A = [BLDG1_STATUS;BO]

MON, TUE, WED, THU, FRI, SAT and SUN are named terms that represent each of the seven days of the
week as an integer from 0-6. The value 0 refers to MON (Monday), 1 refers to TUE (Tuesday), etc. The

SECTION 1: OVERVIEW NAMED CONSTANTS

SPL User Manual (3/16/2007) 1-21

example below shows the named terms MON-SUN and the named term DAYOFWEEK in addition to an
SPL program using these named terms.

KE is the natural logarithm base, 2.718287, expressed as a floating point value.

The term CLEAN is used to determine if any of the autosave program attributes have been changed. This
can be used in the following manner:

IF CLEAN THEN NOTDIRTY
SAVE

NOTDIRTY:

The SAVE operation automatically sets the CLEAN indicator true.

All of the named constants that are supported by SPL are listed in Table 1-2.

REGISTERS SECTION 1: OVERVIEW

1-22 SPL User Manual (3/16/2007)

1.14 REGISTERS
For each program, there are 16 arithmetic registers available for storage of temporary values, counters,
loop indices and other applications. The registers are named for the first 16 letters of the alphabet (A - P).
Each program register has a 32-bit value and a data type that is determined automatically.

When you access a program’s registers from within the program itself, only the register name (A-P) is
required.

A program’s registers are accessible outside the program itself as named attributes of the program object
(e.g., %A, %B, %C, etc.). Likewise, if you access (i.e., read from or write to) another program’s registers,
you must use the percent sign as in PROG1;%A. This is one of four possible formats for accessing
named object attributes.

The example below shows a sample program segment using program registers from within a program and
from other programs

A = -5
B = [PROGRAM9;%P]*5.0
C = A + B /10.0
[PROGRAM4;%F] = F
D = PROGRAM3;%D

SECTION 1: OVERVIEW PROGRAM ATTRIBUTES

SPL User Manual (3/16/2007) 1-23

1.15 PROGRAM ATTRIBUTES
Each SPL program can have up to 255 unique, case-sensitive, user-defined program attributes. Each
attribute has a two-character attribute name, a data type and a 32-bit value. Program attribute names can
consist of any characters, but cannot begin with % or $.

When you select an attribute name, choose one that has some mnemonic significance, that is, one that
reflects the use or meaning of the attribute (e.g., CV for current value, MN for minimum, TI for time, etc.).
This increases the readability of your program and will aid in the process of troubleshooting in the future.

When working with PUP controllers the data type of program attributes can be any of the standard data
types.

Before you reference a user-defined program attribute within an SPL program, you must first declare the
attribute by using the ATTR statement. The ATTR statement contains the attribute name and a data type
argument.

See Section 2.2.1: ATTR Statement for more information on using the ATTR statement to declare user-
defined program attributes.

A program’s own attributes should be referenced in the program logic using their short form ([;AT] or ;AT)
since this results in the fastest execution of the program. A program can reference its own attributes by
their full program attribute name ([pgname;AT] or pgname;AT) however this can result in much slower
execution of the program. The example below shows how to declare user-defined program attributes and
illustrates some simple examples using program attributes.

ATTR CV,0FDh
ATTR KW,0E0h
ATTR TI,231
ATTR SZ,249

;CV = (ZONE_TEMP;CV - 32.0)*5.0/9.0
A= [KW] + 1.0E3
;TI = TIME
;SZ = 16.358
B = ;CV - ([PROG7;SP]/100)

NAMED OBJECT ATTRIBUTES (SAGE) SECTION 1: OVERVIEW

1-24 SPL User Manual (3/16/2007)

1.16 NAMED OBJECT ATTRIBUTES (SAGE)
Attributes of other objects including points, variables, globals and other programs may be referenced as
terms of expressions. The object name and attribute are specified using the same syntax as the Program
Reference Block. The example below illustrates the formats available for named object attributes using
SPL program segments.

A = \PT\HEAT_VALVE;CV
B = BLDG5_ROOM1;ZT + [\VR\OFFSET VALVE]
C = $MODE
[7WEST_SETPT;MN] = (C+[SETPOINT B]) / 2

For compatibility with RPL programs, the object name and attribute may be optionally enclosed in square
brackets, e.g., [objectname;attribute]. Object names that begin with 0 to 9 and/or contain one or more
spaces must be enclosed in square brackets.

Named object attributes may begin with a 2-character object type code. When used, this code is delimited
by backslash characters, i.e. \PT\. The named object type codes are:

 PT for points
 VR for variables
 GL for globals
 PG for programs
 MS for MSTP Objects
 BN for BACnet IP or BACnet Ethernet objects

If a named object type code is not specified, the SAGEMAX performs an exhaustive database search for
the named object. The search is conducted in a standard order starting with points and followed by
programs, variables and globals.

If no attribute is specified in the named object, the default attribute is assumed. For variables (which have
a single value), it is not necessary to specify an attribute, since variables do not have attributes. For points
and globals, the default attribute is the first attribute that appears when you monitor the point. For
programs, the default attribute refers to the user-defined program attribute that is defined first in the
program. If no user-defined program attributes are declared or if the program is unloaded, the $$ control
attribute is the default attribute.

SECTION 1: OVERVIEW NAMED PUP OBJECT ATTRIBUTES (GX, DX, GPC)

SPL User Manual (3/16/2007) 1-25

1.17 NAMED PUP OBJECT ATTRIBUTES (GX, DX, GPC)
The #SOLODX, #SOLOGX and #GPC targets support numeric PUP channel and attribute specification
using the syntax: [pupchannel;attribute]. The #SOLODX and #GPC also support this form for specific
PUP peer devices identified by their unit number: [Uunit_pupchannel;attribute]. Here are some
examples:

[F902;AB] attribute AB, pupchannel F902
[F902] pupchannel F902, default attribute
[U100_F902;AB] attribute AB, pupchannel F902 in unit 100
[U100_F902] default attribute, pupchannel F902 in unit 100

1.17.1 NAMED BACNET OBJECT PROPERTIES (GPC)
The #GPC also supports access to BACnet object properties enclosed in square brackets. A period is
used to delimit the fields of the name:

[.propertyname] a property of this program object
[objecttypeinstance.propertyname] a property of an object in this device
[device.objecttypeinstance.propertyname] a property of an object in another device

The propertyname could be a well-known property name like CV, or a numeric property identifier. The
objectypeinstance would use well known mnemonics for standard object types followed by decimal
instance numbers, e.g. AV27. If the objectypeinstance was numeric then it would be the objectidentifier.
Here are some examples:

[.85] the present_value of this program object
[.2005] proprietary property 2005 of this program object
[AV27.] the present_value of object AV27
[BV6.change_of_state_count] change_of_state_count for object BV6
[BV6.15] same as previous
[0x400005.85] AO5 present_value
[123.BO29.present_value] the present_value for object BO29 on device 123

The SPL compiler derives the mnemonics for standard object type names (AV, BO etc.) and well-known
property identifiers from sections of its INI file. This allows even proprietary object types and property IDs
to use a human-friendlier syntax.

TABLES (SAGE) SECTION 1: OVERVIEW

1-26 SPL User Manual (3/16/2007)

1.18 TABLES (SAGE)
Tables are collections of up to 1,073,741,824 data values which are stored as linear, one-dimensional
arrays in disk-resident files. These files have a maximum size of 4,294,967,296 bytes.

SPL recognizes two types of tables: SPL tables and non-SPL tables. All SPL table files are stored in the
reserved directory C:\TABLES. SPL table files may be stored in this directory or in any of its
subdirectories and have the extension .TBL. A typical table file might have the full path name
C:\TABLES\XXX\YYY.TBL which would be represented in an SPL statement by the path fragment
XXX\YYY.

Individual SPL table terms may be referenced as terms in expressions using the syntax below.

 &tablefragment(expression)

The argument expression in parentheses is evaluated to determine a zero-based index into the table. The
resulting index is used to determine which data value to read from the table file. If the result of the index
expression is greater than the actual number of values in the table file, an expression evaluation error
occurs at run time. Examples of SPL table references are shown below.

 &TABLE6(A+5)
 &MYTABLE(4)
 &LOOKUP\CLAIREX(D)

To access non-SPL tables (e.g., trend files), the entire pathname for the table must be specified using the
following syntax.

 &tablepath(expression)

This is done by placing a backslash character (\) as the first character after the & or a colon (:) as the
second character after the &. Examples of non-SPL table references are shown below.

 &\TREND\TREND1.TRN (J)
 &C:\TREND\TREND2.TRN (K+L)

The code below shows an SPL programming example of the use of table references:

A=100
B=0

L1: B=B+&TABLE3(A-1)
LOOP A,L1

1.18.1 RAM-BASED TABLES
RAM-based tables are supported for all compiler target options. RAM-based table terms are differentiated
from file-based table terms by a double ampersand (e.g. &&RAMTABL(expression)) rather than a single
ampersand (e.g. &FILETABL). RAM-based table names follow the same rules as symbols and labels and
can contain up to 16 characters excluding the two ampersands. RAM-based tables are declared in the
following manner:

TABLE name (size, type)

SECTION 1: OVERVIEW TABLES (SAGE)

SPL User Manual (3/16/2007) 1-27

where:
name is the table name (without ampersands)

size is number of entries in the table

type id the data type of the table

RAM-based tables can be initialized by DATA statements directly following the TABLE declaration:

TABLE name (size, type)
DATA v1,v2,v3,v4....
DATA vn, vn+1....

The entire table can be initialized to the same value using the following syntax when declaring it:

TABLE name (size, type) = value

Table elements not specifically initialized are filled with 0's.

RAM-based tables can be declared anywhere within the body of the SPL source. Each TABLE declaration
that is not preceded by a TABLE or DATA statement causes the SPL compiler to insert a STOP statement
(or #ENDONESEC for a SOLO/GX or GPC with an open #ONESEC routine) directly preceding the TABLE
declaration.

FUNCTIONS SECTION 1: OVERVIEW

1-28 SPL User Manual (3/16/2007)

1.19 FUNCTIONS
Functions are procedures which operate on one or more arguments and produce a single value result.
SPL provides a number of built-in functions, any of which may be used as terms in any expression.
arithmetic functions. The arguments to these functions can be integer or fixed expressions (ix), floating
expression (fx), integer, fixed or floating expressions (x) or time expressions (tx). All of the functions
available through SPL are summarized in Table 1-3. Also included is the datatype of the returned value as
well as a listing of what target platforms may use the function.

 ‡ For the DX and GX target platforms, SQRT may only be used with Integer arguments and will return an integer result.

The RETYPE function is used to convert the data type of an expression to a specified data type. This
function uses two expressions. The first expression represents the value to be converted. The second

Table 1-3 SPL Functions

Function Description Returned Data Type SAGE DX GX GPC

RETYPE(x1,x2) Convert to a specified datatype x2

FIX(fx,ix) Convert float to fixed fixed

FLOAT(ix) Convert integer to float float

INT(x) Convert to integer integer

ROUND(x) Round off fixed or float

ABS(x) Absolute value integer or float

SIN(x) Sine value float

COS(x) Cosine value float

TAN(x) Tangent value float

ARCTAN(x) Arctangent value float

LOG(x) Logarithm float

LN(x) Natural logarithm float

EXP(x) ex float

SQRT(x) Square root integer or float ‡ ‡

BETWEEN(tx,tx) Between two times
integer,

0=not between
1=between

MEAN(x1,x2,..x8) Mean value from list integer or float

MAX(x1,x2,..x8) Maximum value from list integer or float

MIN(x1,x2,..x8) Minimum value from list integer or float

TODAY(ix) Compare today’s day of week

integer,
0=no match

1=match with a
bitmap pattern

DATAYPE(x) Datatype of term integer

SECTION 1: OVERVIEW FUNCTIONS

SPL User Manual (3/16/2007) 1-29

expression represents the new data type of the conversion. The code below shows examples of the
RETYPE function in simple SPL program segments.

[MX_FE00;MX] = RETYPE (A,0FDh)
OAT1;CV = RETYPE (B,251)

The FIX function is used to convert the data type of an expression from floating point (E0h) to a fixed type.
This function uses two expressions. The first expression represents the floating point value to be
converted. If the second expression ix evaluates to a number from 1-10, then the result is a signed fixed
data type with ix digits to the right of the decimal point. If the second expression evaluates to zero, then
the result has the appropriate number of digits to represent the floating point value in a fixed format. If the
second expression ix evaluates to a number greater than 10, it represents the desired data type, e.g.,
FIX(XYZ,2) is the same as FIX(XYZ,0FAh).

The code below shows examples of the FIX function and examples in simple SPL program segments

A=1.06E4 Output: A=1.06E4 (float)
B=1 B=1 (integer)
C=FIX (A,B) C=10600.0 (fixed)
D=3.4567E-1 D=3.4567E-1 (float)
E=FIX (D,B-1) E=0.34567 (fixed)
F=FIX (D,0FDh) F=0.3 (fixed)

The FLOAT function is used to convert an integer or fixed point value to a floating point value (E0h). This
function uses a single expression to represent the integer or fixed point value that is to be converted to
floating point. The code below shows an example of the FLOAT function using simple SPL statements.

A=421 Output: A=421 (integer)
B=FLOAT(A+100) B=5.21E2 (float)

The INT function is used to convert a floating or fixed point value to an integer that is less than or equal to
the value of the specified expression. The resulting data type after using the INT function is always either
0FEh or 0FFh. Simple INT SPL program examples are shown in the code below:

A=7.5 Output: A=7.5
B=-3.1 B=-3.1
C=-1.75E0 C=-1.75E0
D=INT(A) D=7
E=INT(B*2) E=-7
F=INT(C) F=-2

The ROUND function is used to round off an integer, fixed or floating point value to the closest whole
number. The result is either a fixed (for integer or fixed point values) or a floating point number (for floating

FUNCTIONS SECTION 1: OVERVIEW

1-30 SPL User Manual (3/16/2007)

point values). This function has a single expression x which represents the value to be rounded. The code
below shows examples of the ROUND function using simple SPL statements.

A=7.5 Output: A=7.5
B=-3.1 B=-3.1
C=-1.75E0 C=-1.75E0
D=ROUND(A) D=8.0
E=ROUND(B*2) E=-6.0
F=ROUND(C) F=-2.0E0

The ABS function is used to get the absolute value of an integer, fixed or floating point value. This function
has a single expression which represents the input value to the absolute value function. The result is
either an integer, fixed or floating point value. Simple ABS SPL program examples are shown below:

A=7.5 Output: A=7.5
B=-5.1 B=-5.1
C=-3.21E0 C=-3.21E0
D=ABS(A) D=7.5
E=ABS(B) E=5.1
F=ABS(C) F=3.21E0

The SIN function is used to calculate the sine value of an expression. This function uses a single
expression which represents the input value in radians (2π radians = 360 °). The result is always in
floating point format. The code below shows an example of the SIN function:

C=5 Output: A=2.5E0
A=C*SIN(PI/6)

The COS function is used to calculate the cosine value of an expression. This function uses a single
expression which represents the input value in radians (2π radians = 360 °). The result is always in
floating point format. The code below shows an example of the COS function:

C=5 Output: A=2.5E0
A=C*COS(PI/3)

The TAN function is used to calculate the tangent value of an expression. This function uses a single
expression which represents the input value in radians (2π radians = 360°). The result is always in floating
point format. The code below shows an example of the TAN function:

Input: angle=45° (pi/4 radians)Output: B=3.0E0

A=3
B=A*TAN(PI/4)

SECTION 1: OVERVIEW FUNCTIONS

SPL User Manual (3/16/2007) 1-31

The ARCTAN function is used to calculate the arctangent (the inverse function of the tangent) value of an
expression. This function uses a single expression which represents the tangent (TAN) value. The
ARCTAN function determines an angular value in radians (2π radians = 360 °) whose tangent is the value
specified by the input expression. The result is in floating point format and represents an angular value in
radians. The code below shows a simple SPL program using the ARCTAN function:

Input: A=TANvalue=1.0E0Output: B=7.853982E-1 (angle in radians)
C=45 (angle size in degrees

A=1.0E0
B=ARCTAN(A)
C=B/(PI/180)

The LOG function is used to calculate the logarithm (base 10) of an expression. This function uses a
single expression in integer, fixed or floating point format. The result of the LOG function is in floating point
format.

The LN function is used to calculate the natural logarithm of an expression. This function uses a single
expression in floating point format. The result of the LN function is in floating point format.

The code below shows examples of both the LOG and LN functions.

A=1.0E2 Output: A=1.0E2
B=LOG(A) B=2.0E0 (LOG(X))
C=LN(A) C=4.6051702E0 (LN(X))

The SQRT function is used to calculate the positive square root of positive expressions (values greater
than or equal to zero). This function uses one input expression that can be an integer, fixed or floating
point type. The type of the result is either integer or floating point depending on the type of the input
argument. The code below shows an example of the SQRT function in an SPL program:

NOTE
As the expression used in the TAN function
approaches 90° (1.5707965 = π/2 radians)
and 270° (4.7123895 = 3π/2 radians), the
limits of the TAN function approach positive
infinity (+∞) and negative infinity (-∞)
respectively. These values are displayed as
+INF and -INF when you use the TAN func-
tion.

The named term PI is most likely used in the
expression argument for the SIN, COS and
TAN functions.

FUNCTIONS SECTION 1: OVERVIEW

1-32 SPL User Manual (3/16/2007)

A=1000.0 Output: A=1.0E3
B=SQRT(A) B=3.162277E1

The BETWEEN function is used to determine if the current time of day is between two specified times.
This function has two input expressions which are separated by a comma. These expressions represent
the two times which must be in a time format. The integer result is either 0 (false) if the current time is not
between the two times specified, or 1 (true) if the current time is between the two specified times. An
example is shown below:

L20: A=7:00 Output: A=7:00 (1st time argument)
B=21:00 B=21:00 (2nd time argument)
C=BETWEEN (A,B) C=1 if current time is between A & B

C=0 if current time is not between A & B

The MEAN function is used to determine the average value of a list of up to 8 expressions. The mean is
calculated by summing the values of the expressions and then dividing by the number of expressions.
The expressions used by this function can mix integer, fixed and floating point data types in the same
statement. The input expressions are separated by commas. The result is the average value of the
expressions listed, but may have a data type that is different than the input expressions. This is due to the
calculation of the average value, in which the data type coercion rules for addition and division apply.
Depending on your application, you may have to use the RETYPE function to get the data type that you
desire. RETYPE was discussed earlier in this section.

The code below shows an example of the MEAN function using simple SPL program statements:

A=10.0 Output: G=(A+B+C+D+E+F)/6=63.6
B=98.0
C=75.0 E=91.2

NOTE
On DX1 and GX1 controllers, the SQRT
function may only be used with integer argu-
ments and will return and integer result.

NOTE
When you use the BETWEEN function, the
value of argument tx1 must be less than the
value of argument tx2.

SECTION 1: OVERVIEW FUNCTIONS

SPL User Manual (3/16/2007) 1-33

D=62.5 F=44.9

G=MEAN(A,B,C,D,E,F)

The MAX function is used to determine the maximum value of a list of up to 8 integer, fixed or floating point
expressions. The arguments are separated by commas. The resulting data type is the data type of the
maximum value. The code below shows an example of the MAX function using simple SPL program
statements:

A=10.0 Output: G=98.0
B=98.0
C=75.0 E=91.2
D=62.5 F=44.9

G=MAX(A,B,C,D,E,F)

The MIN function is used to determine the minimum value of a list of up to 8 integer, fixed or floating point
expressions. The arguments are separated by commas. The resulting data type is the data type of the
minimum value. The code below shows an example of the MIN function:

A=10.0 Output: G=10
B=98.0
C=75.0 E=91.2
D=62.5 F=44.9

G=MIN(A,B,C,D,E,F)

The TODAY function determines whether or not the current day of the week is part of a day-of-the-week
bitmap pattern specified by its integer expression. The result of this function is in integer format and is 0
(false) if there is no match between the current day and the expression bitmap, and 1 (true) if there is a
match between the current day and expression bitmap.

To determine whether or not the match exists, the TODAY function logically ANDs a day-of-the-week mask
with the argument. The day-of-the-week masks are shown below:

 Monday 0000 0001b (1)
 Tuesday 0000 0010b (2)
 Wednesday 0000 0100b (4)
 Thursday 0000 1000b (8)
 Friday 0001 0000b (16)
 Saturday 0010 0000b (32)
 Sunday 0100 0000b (64)
 Holiday 1000 0000b (128)

The code below illustrates the TODAY function in an SPL program example:

FUNCTIONS SECTION 1: OVERVIEW

1-34 SPL User Manual (3/16/2007)

ATTR AD,0E9h
 :
;AD=00011111b

Check: IF TODAY(;AD) Then Do_It
MWAIT 1
GOTO Check

Do_it: B=100

The DATATYPE function is used to determine the data type of an expression that you specify as the
argument. The result of this function is in integer format. The code below illustrates an SPL example
using the DATATYPE function:

D=DATATYPE(MX_FE01;CV)
 :
C=A*1.035-5
 :
MX_FE01;CV=RETYPE(C,D)
 :

SECTION 1: OVERVIEW EXPRESSION OPERATORS

SPL User Manual (3/16/2007) 1-35

1.20 EXPRESSION OPERATORS
An arithmetic expression in SPL may be a simple term, or may be made up of a sequence of terms and
operators. SPL provides both unary and binary operators. Unary operators have precedence over binary
operators, so any term may be preceded by zero or more unary operators which are evaluated from left to
right. Binary operators are always evaluated from left to right with no implied precedence. You must use
parentheses to set operator precedence.

Table 1-4 lists all the unary and binary operators available in SPL. Included with each operator is a
description of the function of the operator, a sample expression using the operator, and notes relating to
the use of the operator.

 ‡ The exponential operator is only available on the SAGE and GPC controllers.

Table 1-4 Expression Operators

Operator Description Example Notes

- Unary negation -A same as 0-A

NOT Unary ones complement NOT A 32 bit integer

** Exponential‡ A**B A to the B power

* Multiplication A * B

/ Division A / B

MOD Remainder after division A MOD B 7 MOD 3 = 1

+ Addition A + B

- Subtraction A - B

== Equality A == B 0 if not, 1 if equal

<> Inequality A<>B 1 if not, 0 if equal

> Greater than A > B 1 if A>B, else 0

>= Greater than or equal A>=B 1 if A>B or A=B

< Less than A < B 1 if A<B, else 0

<= Less than or equal A<=B 1 if A<B or A=B

AND Bitwise And A AND B 32 bit integer

OR Bitwise Or A OR B 32 bit integer

XOR Bitwise Exclusive-Or A XOR B 32 bit integer

SHL Bitwise Shift Left A SHL B 1 SHL 3 = 8

SHR Bitwise Shift Right A SHR B 256 SHR 7 = 2

EXPRESSION OPERATORS SECTION 1: OVERVIEW

1-36 SPL User Manual (3/16/2007)

NOTE
Since operators are evaluated from left to
right with no precedence, you must use
parentheses to indicate precedence for
operations. For example:
 12.34 + 45.7 / 2.0 + 2.1 = 31.12 and
 12.34 + 45.7 / (2.0 + 2.1) = 14.15609756.

NOTE
Logical expressions must be enclosed in
parentheses for proper evaluation. For
example:
 IF (DAYOFWEEK==SAT) OR
 (DAYOFWEEK==SAT) THEN ...

 SPL User Manual (3/16/2007) 2-1

IN THIS SECTION

SECTION 2: SPL PROGRAM STATEMENTS

Introduction ..2-3
Working with Attributes ..2-5
 ATTR Statement..2-5
 TABLE and DATA Statements2-5
 SAVE Statement (SAGE)2-6
Assignment Statements and Equates2-8
References...2-10
 DREF Statement ...2-10
 REF Statement..2-10
Virtual Attributes...2-11
Iteration, Branching and Subroutines.................2-12
 GOTO statement...2-12
 IF... THEN... {ELSE...} Statement..................2-12
 ON... GOTO... statement2-13
 LOOP Statement ...2-13
 GOSUB Statement ..2-14
 CALL Statement ..2-14
 RETURN Statement2-15
Program Delays ...2-16
 SWAIT and MWAIT Statements2-16
 WAIT Statement ..2-16
Printing, Logging, and Alarms............................2-17
 PRINT Statement (SAGE).............................2-17
 LOG Statement (SAGE)2-19
 ALARM Statement...2-20

Job Execution (SAGE).......................................2-22
 The REPORT Job...2-22
 The SPOOL Job ...2-25
 The DATA CAPTURE /DATA STUFF Job2-27
 The UPLOAD / DOWNLOAD FILE Job2-31
 The EXPORT DATABASE FILE Job.............2-32
Spooling Report and Log Files (SAGE)2-35
 SPOOL Statement ..2-35
Trending Control Statements (SAGE)................2-36
 STARTTREND & STOPTREND Statements.2-36
Program Execution Statements (SAGE)2-37
 ACTIVATE Statement....................................2-37
 DEACTIVATE Statement...............................2-37
 The RESTART Statement2-37
 STOP Statement ...2-38
 UNLOAD Statement......................................2-38
Execution Error Control2-40
 ERRORABORT Statement2-40
 ERRORWAIT Statement...............................2-40
 ONERROR Statement2-41
Debugging Statements.......................................2-42
 SECTION Statement.....................................2-42
 NOP Statement...2-42
Program Control Attributes2-43

SECTION 2: SPL PROGRAM STATEMENTS

2-2 SPL User Manual (3/16/2007)

SECTION 2: SPL PROGRAM STATEMENTS INTRODUCTION

SPL User Manual (3/16/2007) 2-3

2.1 INTRODUCTION
This section is intended to familiarize you with all of the SPL programming statements by organizing them
into logical groups based on the functions that they perform. Program statements fall into the following
categories:

 attribute definitions and references
 assignment statements
 iteration control, program branching and subroutines
 program delays
 printing, logging and alarming
 job execution
 spooling
 trending control
 program execution control
 execution error control
 debugging statements

Attribute definitions and references are used to declare user-defined program attributes and save the
values of attributes to the program’s attribute initial value (INI) file.

Assignment statements are used to assign the value of an expression to a variable. This type of program
statement is characterized by the use of an equal sign (=).

Iteration control, program branching and subroutines are statements perform a statement or group of
statements some number of times, change the order in which the logic is executed, or transfer program
control to another portion of the program (a subroutine).

Program delays are statements which suspend program execution, either for a set amount of time or until
certain conditions are met.

Printing, logging and alarming refers to statements that give you the ability to print information to a port, log
information to a file, or generate formatted alarms of definable alarm classes.

Job execution refers to statements that give you the ability to execute any SAGEMAX job from within the
SPL program execution environment.

Spooling refers to commands which offer the ability to send specified files to the printer.

Trending control refers to program statements that can control the execution of trends from a program.

Program execution control refers to statements that can start, stop and prepare programs to be executed.

Execution error control refers to program statements that allow you to define a course of action for PEX
when network access errors occur.

Debugging statements refer to programming statements that can be used to aid in the diagnosis of
program logic errors.

Each SPL programming statement is individually explained, including sample SPL statements in the
following pages. All of the SPL programming statements are summarized in Table 2-1. To quickly look up
a particular statement’s syntax and arguments, see Appendix A: SPL Language Reference.

INTRODUCTION SECTION 2: SPL PROGRAM STATEMENTS

2-4 SPL User Manual (3/16/2007)

Table 2-1 Program Statements

Format Description

variable = expression assignment statement
ACTIVATE progname start a stopped program - load if required
ALARM classexpr, "formatstring", x,x,x...x,x,x generates an alarm
ATTR progattr,datatype declare program attribute

CALL PLBname go to external subprogram’s logic block then load,
execute and possibly unload it

CALL PLBname,STICK same, but do not unload the program
DATA v1, v2, v2, v4 specifies data for the preceding table
DEACTIVATE progname remove a program from memory (RAM)
DREF unit, channel;AA defines elements for program reference block
ERRORABORT trap condition - abort on errors
ERRORWAIT trap condition - wait until no error
symbol EQU expression symbolic equate statement
GOSUB label go to internal subroutine
GOTO label unconditional branch
IF expr THEN label conditional branch if expr is true
IF expr THEN label1 ELSE label2 conditional branches if expr is true or false
JOB classexpr, "jobstring", x,x,x...x,x,x request to SAGEMAX job scheduler
LOG logfilename, "formatstring",x,x,x...x,x,x print (log) information to a file
LOOP register,label iteration control
MWAIT expression wait a certain amount of minutes
NOP no operation used for debugging
ON expression GOTO label0,label1...labeln indexed conditional branches
ONERROR label trap condition - branch if error occurs
PRINT portexpr,classexpr,"formatstring",x,x,x...x,x,x print information to a port
PROP progproperty,BACnetDatatype declares a BACnet property for BACnet based devices
RESTART progname start a program from beginning - load if required
RETURN return from a subroutine
SAVE copy all program attributes to INI file
SAVE aa,bb,cc,dd... copy selected attributes to INI file
SECTION number section marker used for debugging
SPOOL portexpr,pathname send a file to be printed
SPOOL portexpr,pathname,DELETE send a file to be printed, then delete it
STARTTREND trendname activate a trend
STOP halt execution of this program
STOP progname halt execution of specified program
STOPTREND trendname deactivate a trend
SWAIT expression wait a certain amount of seconds
TABLE name (size, type) initializes a RAM-based table
UNLOAD programname remove this program from memory (RAM)
WAIT (expression) wait until an expression is true, then go on

SECTION 2: SPL PROGRAM STATEMENTS WORKING WITH ATTRIBUTES

SPL User Manual (3/16/2007) 2-5

2.2 WORKING WITH ATTRIBUTES

2.2.1 ATTR STATEMENT
ATTR {channel};attr,datatype{=initialvalue}{,autosave}
where:

channel is the channel number (optional)
attr is the attribute
datatype is the data type
initialvalue is the initial value (optional)
autosave is the autosave flag

Local program attribute names and their data types are declared using the ATTR command. Although local
program attributes can be declared anyplace within in the SPL text, they must be declared before they are
referenced. It is strongly recommended that all local attributes are declared before any other SPL
statements. Local program attributes that are referenced, but not declared, result in compile-time errors.

To maintain backward compatibility, the short-form of attribute declaration is supported:

ATTR attr,datatype

If an initial value and/or auto save indicator is required but no channel is to be defined, a semicolon (;)
must precede the attribute:

User defined attributes are normally stored in the program channel in which they were created. However,
the GC and GX controllers allow you to use the optional channel argument in the attribute declaration to
specify a channel. By default, user defined attributes will be stored in channel 0000h but can be specified
for any channel from 0000h-7FFFh. This can allow you to have multiple attributes with the same two-letter
name, but different channel numbers. For example 1000;AA, 1001;AA, and 1002;AA, could all be used
as valid attributes within a single program.

2.2.2 TABLE AND DATA STATEMENTS
TABLE name (size, datatype){=value}
where:

name is the name of the table
size is the number of entries contained in the table
datatype is the datatype
value is the value to which all cells in the table will be initialized

Tables are collections of up to 1,073,741,824 data values which are stored as linear, one-dimensional
arrays. These files have a maximum size of 4,294,967,296 bytes.

SPL recognizes two types of tables: SPL tables and non-SPL tables. All SPL table files are stored in the
reserved directory C:\TABLES. SPL table files may be stored in this directory or in any of its
subdirectories and have the extension .TBL. A typical table file might have the full path name
C:\TABLES\XXX\YYY.TBL which would be represented in an SPL statement by the path fragment
XXX\YYY.

Individual SPL table terms may be referenced as terms in expressions using the syntax below.

 &tablefragment(expression)

WORKING WITH ATTRIBUTES SECTION 2: SPL PROGRAM STATEMENTS

2-6 SPL User Manual (3/16/2007)

The argument expression in parentheses is evaluated to determine a zero-based index into the table. The
resulting index is used to determine which data value to read from the table. If the result of the index
expression is greater than the actual number of values in the table file, an expression evaluation error
occurs at run time. Examples of SPL table references are shown below.

 &TABLE6(A+5)
 &MYTABLE(4)
 &LOOKUP\CLAIREX(D)

To access non-SPL tables (e.g., trend files), the entire pathname for the table must be specified using the
following syntax.

 &tablepath(expression)

This is done by placing a backslash character (\) as the first character after the & or a dive letter and a
colon (:) after the &. Examples of non-SPL table references are shown below.

 &\TREND\TREND1.TRN (J)
 &C:\TREND\TREND2.TRN (K+L)

The code below shows an SPL programming example of the use of table references:

A=100
B=0

L1: B=B+&TABLE3(A-1)
LOOP A,L1

2.2.3 SAVE STATEMENT (SAGE)

SAVE {programattr1,programattr2,...programattr16}

where:
programattr1,programattr2,...programattr16 are the program attributes (up to 16) which are to be

saved

The SAVE statement is an attribute manipulation command that is used to write the values of custom
program attributes to an initial value (INI) file. The SAVE command has two formats to accommodate
saving all or selected program attribute values. SAVE by itself causes the current value of all program
attributes to be written to the INI file. SAVE followed by up to 16 program attributes saves the values of
only those attributes which are specified. Only those attributes specified will appear in the .INI file.

Regardless of the format used, the current INI file is renamed with a .$NI extension and a new INI file is
created with the updated data.

The SAVE statement behaves like a NOP statement if no INI file is specified in the program definition. If
an INI path fragment that does not currently exist is specified, PEX will create the file when the first SAVE
is executed.

The code below illustrates the use of the SAVE statement in an SPL programming example:

SECTION 2: SPL PROGRAM STATEMENTS WORKING WITH ATTRIBUTES

SPL User Manual (3/16/2007) 2-7

ATTR HL,0FBh
ATTR LL,0FBh
ATTR CS,0FBh
ATTR HS,0FBh
 :
;CS=A+5.0
;HS=B-7.0
SAVE CS,HS
 :

ASSIGNMENT STATEMENTS AND EQUATES SECTION 2: SPL PROGRAM STATEMENTS

2-8 SPL User Manual (3/16/2007)

2.3 ASSIGNMENT STATEMENTS AND EQUATES

2.3.1 STANDARD VALUE ASSIGNMENT
variable = expr

SPL allows various forms of value assignment statement. In each case, a variable on the left side of the =
(equal sign) is assigned the new value dictated by the expression on the right side. The right side
expression produces a value and a data type. Because automatic data type coercion may occur during
evaluation, the data type of the expression may not match the data type of the variable on the left side. In
this case the data type and value from the expression may have to be coerced into the variable's data type
according to certain rules. The table below summarizes the conversions in general:

*Different fixed data type.

Integers and time data types are treated as fixed types. The table above does not reflect that there are 20
distinct types of fixed types, i.e. 10 decimal point positions each for signed and unsigned types.

When the left side variable is a local program attribute, coercion of the expression into the proper data type
is done automatically by PEX. When the left side variable is a register, unless the data type of the result is
converted according to the table above, the data type of the register is automatically changed to the data
type of the result. When the left side variable is any other type of object, the result must be converted
according to the table or incorrect values may be assigned to the variable. For example, if the left side
variable is a point whose data type is F9H (xxxxxxx.xxx) and the expression has a data type of F7H
(xxxxxx.xxxx) then a RETYPE (F9H) must be done so that the value assigned to the variable is not 10
times too large (in this case.)

There are several forms of assignment statements that may be used in SPL. These are summarized
below:

Left Side Right Side Effect

fixed float left=FIX(right)

float fixed left=FLOAT(right)

fixed* fixed left=RETYPE(right)

register = expression A = B+C

;programattribute = expression ;CV = B+C

namedobject = expression OAT = B+C

namedobject = expression [ZONE TEMP] = B+C

namedobject = expression [1STFLOOR] = B+C

\objecttype\namedobject = expression \VR\OAT = B+C

namedobject;attribute = expression [LOOP;SP]= B+C

\objecttype\namedobject;attribute = expression \PT\LOOP;SP = B+C

REF(expression) = expression REF(6) = B+C

&tablename(expression) = expression &CLAIREX(29) = B+C

SECTION 2: SPL PROGRAM STATEMENTS ASSIGNMENT STATEMENTS AND EQUATES

SPL User Manual (3/16/2007) 2-9

At first there would appear to be a conflict in syntax between local attribute references that are used as
variables on the lefthand side of assignment statements, e.g., ;AT=expression, and comments since both
begin with semicolons. The difference in syntax between the two is that comments begin in the leftmost
column and local program attribute references used as variables must have at least one leading space or
tab. In order to avoid confusion, local program attribute references can be enclosed in brackets, i.e.
[;AT]=expression.

2.3.2 EQU
symbol EQU expression

EQU (Equate) provides a simple method to assign substitute names to commonly used point references in
an SPL program, providing the ability to easily read and interpret an SPL program in a more basic form.
EQU is a symbolic equate in its rawest form.

EQU statements must be defined in a program before they are used, because the compiler considers all
terms that are not SPL keywords, numeric values or SPL symbols to be object names The symbol part of
the EQU statement can be up to 16 characters in length, which must all be printable characters (A-Z, 0-9,
!, @, etc.) and cannot begin with a digit. The right-hand side of the expression can be up to 32 printable
characters and can be a programmatic expression or point data location (e.g. FE01;CV).

The code below illustrates the use of the EQU statement in an SPL programming example:
#GPC
#LABELS
;
FANSTATUS EQU FE01;CV
FANOUTPUT EQU FB02;CV

;start of program
L0: SWAIT 1
 IF FANSTATUS==1 THEN TURNON ELSE TURNOFF
;
TURNON
 FANOUTPUT = 1
GOTO L0:
;
TURNOFF
 FANOUTPUT = 0
GOTO L0

UNS(x1,x2,x3,x4,x5,attribute) = expression UNS(1,0,0,0,FB00h,CV) = B+C

REFERENCES SECTION 2: SPL PROGRAM STATEMENTS

2-10 SPL User Manual (3/16/2007)

2.4 REFERENCES

2.4.1 DREF STATEMENT
The DREF (Define REFerence) statement is used with the #SOLODX, #SOLOGX and #GPC target
options for the purpose of building Program Reference Blocks (PRBs) equivalents. DREF statements take
the following form:

DREF unit,channel;attr

where:
unit is the unit number (optional)
channel is the channel number
attr is the attribute

DREF statements cause entries to be made into the attribute table at the end of the PLB, taking the place
of the PRB. The attribute/reference table can contain up to 255 entries, i.e., there can be a total of 255
combined program attributes and references per PLB for the #SOLODX, #SOLOGX and #GPC target
options. If DREF statements are used along with the #SOLODX option, PRBs cannot be used when the
DX executes the program linked with the PLB. Note that the SOLO/GX and GPC never use PRBs, so all
references must be declared using DREF statements. Attributes and references are added to the table in
the order in which they are defined. This ordering identifies REF indices. Attribute and reference
declarations can be mixed freely if desired. The DREF statement is invalid for the #SAGE option.

2.4.2 REF STATEMENT
The REF statement is used to read the values of a reference created using the DREF statement.

REF (index)

where:
index is the index number of the referenced attribute

When the REF statement is used, index is evaluated at run time to determine an index value from 0-255.
The resulting index is used to determine which of 256 possible referenced values to use in place of the
REF. If the result of the index expression is greater than 255, or greater than the actual number of
references present, then an expression evaluation error occurs at run time.

 DREF 0FE01H;CV
; when no unit ID is defined, DREF looks locally.
DREF 15,0FE02H;CV
;
L0: A = REF(0)
 B = REF(1)
 SWAIT 10
 GOTO L0

SECTION 2: SPL PROGRAM STATEMENTS VIRTUAL ATTRIBUTES

SPL User Manual (3/16/2007) 2-11

2.5 VIRTUAL ATTRIBUTES
In some applications, it may be necessary or desirable to read attribute values from a point that may not
have a point object created for it. SPL provides a mechanism for using arithmetic expressions to specify
each of the necessary parameters for identifying the particular point attribute that is desired. This type of
access is called virtual attribute access. The special function UNS may be used as a term in any
expression to accomplish reading of a point attribute value. The UNS function makes use of the SAGE's
Unified Network Services for reading, hence its name. The syntax for the UNS function is:

UNS(portexpr, unitexpr, ftypeexpr, cardexpr, chanexpr, attribute)

In this syntax, portexpr is an expression whose value must be in the range 0..7 representing the SAGE
port number where the point is located. unitexpr is an expression representing the unit number (0..65534)
on that port where the point is. ftypeexpr is an expression representing the fundamental type code and
subchannel code for the point. The fundamental type is 0..15 and the subchannel is 0..15. They are
combined by the formula: ftypeexpr = fundamental type + (subchannel * 16). cardexpr is an expression
representing the card number (0..255) for the point. chanexpr is an expression representing the channel
number (0..65535 or FFFFh). attribute is not an expression, but instead is the literal attribute name as two
characters.

Not all SAGE port types or protocols require all of the UNS parameters to fully qualify a point. In those
cases, the other parameters may be specified as zero.

ITERATION, BRANCHING AND SUBROUTINES SECTION 2: SPL PROGRAM STATEMENTS

2-12 SPL User Manual (3/16/2007)

2.6 ITERATION, BRANCHING AND SUBROUTINES

2.6.1 GOTO STATEMENT

GOTO label

where:
label is the label of the point to which program execution will be switched

The GOTO statement is an unconditional branch statement that causes program logic to jump to some
other location that is identified by a label.
The code below illustrates the use of the GOTO statement and shows a sample SPL programming
example. It may increase the readability of your program logic if you add a blank line after GOTO
statements.

 :
L1: C = A+B

GOTO L3

L2: C = B-A
L3: D = C*2
 :

2.6.2 IF... THEN... {ELSE...} STATEMENT

IF expr THEN label1 {ELSE label2}

where:
expr is the logical expression which determines conditional branching behavior
label1 is the label to jump to if expr evaluates to true
label2 is the label to jump to if expr evaluates to false (optional)

The IF... THEN... statement is a conditional statement that causes the program logic to jump to some other
location identified by a label if a certain condition is true. If the condition is false, execution falls through to
the next sequential statement. If the optional ELSE statement is included, then program execution will
jump to the label following the ELSE statement if the condition evaluates to false.

The code below illustrates the use of the IF... THEN... ELSE... statement and shows its usage in an SPL
programming example.

IF (DAYOFWEEK==SUN) THEN L3
L0: IF (A>B) THEN L1 ELSE L2
L1: C=A+B

GOTO L3

L2: C=B-A
L3: D=C*2
 :

SECTION 2: SPL PROGRAM STATEMENTS ITERATION, BRANCHING AND SUBROUTINES

SPL User Manual (3/16/2007) 2-13

2.6.3 ON... GOTO... STATEMENT

ON expr GOTO label0,label1,label2,label3,....

where:
expr is the expression which determines which label is selected
label0,label1,label2,label3,.... are the labels of the sections to which program control can be

switched

The ON/GOTO statement is a conditional statement that identifies a series of indexed labels to which PEX
transfers control based on the value of an expression. The code below illustrates the use of the ON/GOTO
statement.

ATTR ER,07
 :
ON INT(B-10) GOTO L0,L1,L2
:ER=1
PRINT 13,226,"Unsuccessful."
GOTO DONE

L0: D = (C+1)/2
GOTO MERGE

L1: D = (C+20)/2
GOTO MERGE

L2: D = (C+50)/2
MERGE: PRINT 13,226,"Success. D=%?%",D
DONE: STOP

The indices of the ON/GOTO statement are zero-based. In addition, if an index evaluates to a number that
is greater than the number of indices, program execution continues with the next line of the program.

2.6.4 LOOP STATEMENT

LOOP register,label

where:

register is the number of times the loop is to be executed
label is the program label to which execution will jump

The LOOP statement is an iteration control statement that performs a “decrement register and jump if not
zero” function using a specified register and a program label. The LOOP statement is a combination of an
assignment statement (e.g., A = A-1) and a conditional statement (e.g., IF A>0 THEN Continue).

The code below illustrates the proper use of the LOOP statement in a sample SPL programming example.

A = 100
B = 0

ITERATION, BRANCHING AND SUBROUTINES SECTION 2: SPL PROGRAM STATEMENTS

2-14 SPL User Manual (3/16/2007)

CALC: B = REF (A-1)+B
LOOP A, CALC
REF (100)=B/100

2.6.5 GOSUB STATEMENT

GOSUB label

where:
label is the text label which specifies the starting point of the subroutine

The GOSUB statement is used to call a subroutine in the current PLB. A RETURN statement is used to
terminate the internal subroutine and return execution control to the statement directly following the
GOSUB. The subroutine name is actually a label for which all the naming conventions apply.

The code below illustrates the syntax of the GOSUB statement and shows its use in a sample SPL
program segment:

ATTR AR,0FAH
A=65

READIT: D=&DuctDiam(A-1)
GOSUB AREACALC
&DuctArea(A-1) = ;AR
LOOP A, READIT
 :

AREACALC: ;AR = PI*(D*D)/4
RETURN

2.6.6 CALL STATEMENT

CALL PLBname{,STICK}

where:
PLBname is the name of the PLB being called
STICK is included to prevent the PLB from being unloaded

The CALL statement is used to execute a PLB from within another PLB. The CALLed PLB may be a
block of logic that is shared among several PLBs and/or may be so infrequently used that it is not required
that it be RAM-resident all the time.

PLB names are file fragments as discussed in Section 1.4: The .SPL, .PLB and .LST Files. If a PLB name
begins with a digit (0-9), it must be enclosed in square brackets.

CALLing a PLB from a program causes the CALLer’s program counter to be saved. The counter is set to
execute the first statement of the CALLed PLB. If the PLB is already loaded into memory, then an in-use
count for that PLB is increased by one. If the PLB is not in memory, then it will be loaded and its in-use
count is set to 1.

SECTION 2: SPL PROGRAM STATEMENTS ITERATION, BRANCHING AND SUBROUTINES

SPL User Manual (3/16/2007) 2-15

If the STICK argument is used in the CALL, then the in-use count is set to FFFFh, preventing the PLB
from being unloaded later.

Arguments are passed to the PLB by way of the program registers and user-defined attributes. PLBs
which are loaded by way of CALL statements ignore the CALLed PLB’s attribute declarations because the
attribute list is only created when the program is initially loaded. In other words, CALLed PLBs inherit the
CALLing program’s registers and attributes.

The code below illustrates the use of the CALL statement in a sample SPL program:

L1: D=DAYOFYEAR
L2: SWAIT 5

CALL PID,STICK
[MX_FE01;CV]=0
IF DAYOFYEAR=D THEN L2
CALL DAILY_REPORT
GOTO L1

The CALLed PLB must execute a RETURN at the end of its execution. When the RETURN is executed,
the saved program counter of the CALLer is restored, and execution begins at the statement following the
CALL. Once the program RETURNs, the CALLed PLB’s in-use count is decreased by one, unless it is
FFFFh. If the result is zero, then the CALLed PLB is released from memory. If a main program executes
a RETURN statement while not in an internal subroutine, the program is completely unloaded and its PRB
and attribute block are released.

2.6.7 RETURN STATEMENT

RETURN

The RETURN statement is used in conjunction with the CALL and GOSUB statements.

NOTE
CALLed PLBs must have any common
attributes defined in the CALLing program.
Figure 11-73 illustrates the syntax of the
CALL statement and shows its use in a
sample SPL program.

PROGRAM DELAYS SECTION 2: SPL PROGRAM STATEMENTS

2-16 SPL User Manual (3/16/2007)

2.7 PROGRAM DELAYS

2.7.1 SWAIT AND MWAIT STATEMENTS

SWAIT expr

where:
expr is the number of seconds to delay program execution

MWAIT expr

where:
expr is the number of minutes to delay program execution

The SWAIT and MWAIT statements are used to cause a timed delay in program execution. These
statements each have a single argument which represents a number of seconds or minutes (respectively)
that must pass before program execution continues. The time delay can be viewed as it counts down from
the $D program control attribute. This attribute shows all time delays in seconds. Once the delay reaches
zero, the next program statement is executed.

The code below illustrates the proper use of the MWAIT and SWAIT statements. Sample SPL
programming examples are also shown.

L0: IF (SWITCH==1) Then L1
MWAIT 5
GOTO L0

L1: [PROG1;MN]=[PROG2;SP]+5.0

2.7.2 WAIT STATEMENT

WAIT expr

where:
expr is the logical expression that will determine when the WAIT will finish

The WAIT statement is a conditional statement that halts further program execution until the expression
specified in the argument is true.

The code below illustrates the syntax of the WAIT statement and shows a sample SPL programming
example.

L0: WAIT $ALARMS
CALL Notify

L1: CALL Clear, STICK
IF $ALARMS THEN L1 ELSE L0

SECTION 2: SPL PROGRAM STATEMENTS PRINTING, LOGGING, AND ALARMS

SPL User Manual (3/16/2007) 2-17

2.8 PRINTING, LOGGING, AND ALARMS

2.8.1 PRINT STATEMENT (SAGE)

PRINT portexpr,classexpr,"formatstring",x,x,x...x,x,x

where:
portexpr is the SAGEMAX port (0-14) to which data is to be sent
classexpr is the alarm class code (0-255) to be applied to the text message
formatstring contains a base text string with format specifiers that determine the representation of

the corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expressions to print

The PRINT statement is used to send text output to a port on the controller. In the syntax of the PRINT
statement (see program example below), the portexpr expression defines which SAGEMAX port (0-314) to
print to. The classexpr expression represents the alarm class code (0-255) to be applied to the text
message. The formatstring field of the PRINT statement contains a base text string with format specifiers
that determine the representation of the corresponding expression in the list of expressions (x,x,x...x,x,x)
which follow the format string.

The formatstring field will typically contain a base text string with Format Specifiers that determine the
representation of the corresponding expression in the list of expressions (x,x,x...x,x,x) which follow the
format string. A list of the Format Specifiers is given in Table 2-2.

Table 2-2 Format Specifiers Used by ALARM, LOG, JOB and PRINT Statements

%% the character % itself

%?% use the datatype of the expression

%Fx.y% for floating point xxx.yyy format

%Ix% for integer, x digits wide field

%Ux% for unsigned integer, x digits wide field

%Hx% for hexadecimal, x digits wide field

%Bx% for binary, x digits wide field

%xx% for control characters using decimal numbers xx, i.e. %10% for <lf>,
%13% for <cr> or %07% for <bel>

%R% the 24 character name of the reference that matches the variable

%Tx%

time from HH:MM:SS,
x=2 then HH,
x=5 then HH:MM,
x=8 then HH:MM:SS

%W% current day of week (Mon, Tue, Wed, etc.)

%D% current day of month as two decimal digits

%Mx%
current month of year,
if x=2 then two decimal digits,
if x=3 then name of month (Jan, Feb, etc.)

PRINTING, LOGGING, AND ALARMS SECTION 2: SPL PROGRAM STATEMENTS

2-18 SPL User Manual (3/16/2007)

The program below illustrates the syntax and program examples using the PRINT statement. Table 1-7
lists the format specifiers that are supported.

; -
; This program illustrates a very simple printer program using the PRINT statement.
; -

ATTR PT,0FFh
ATTR FP,0E0h
ATTR FX,0F9h
ATTR PC,0E0h

START: ;PT = -1
SWAIT 1

WAIT: IF ((;PT < 0) OR (;PT > 13)) THEN START

;FP = 1.234567E14
;SI = -98765
;FX = 85.456
;PC = 99.2E0

;First LOG the formatted print statements to a file.
Print ;PT,0,“ TSTPRINT Program Variables on %W% %D%-%M3%-%Y4%”
Print ;PT,0,“ Signed Integer [;SI] = %I7% (7 digits)%13%%10%”,;SI
Print ;PT,0,“ Signed Integer [;SI] = %?% (default format)%13%%10%”,;SI
Print ;PT,0,“ Signed Integer [;SI] = %?L3% (left 3 digits)%13%%10%”,;SI
Print ;PT,0,“ Signed Integer [;SI] = %?R4% (right 4 digits)%13%%10%”,;SI
Print ;PT,0,“ Floating Point [;FP] = %?% (scientific)%13%%10%”,;FP
Print ;PT,0,“ Fixed Point [;FX] = %?% (default format)%13%%10%”,;FX
Print ;PT,0,“ Percent [;PC] = %F3.1% %% (float with percent
 symbol%%)%13%%10%”,;PC
Print ;PT,0,“ Referenced Object Ref (0) %R% = %?% (with

name)%13%%10%”,0,REF(0)
Print ;PT,0,“ The first string from \SPL\SPL.TXT (0-based) = %S%”,1
GOTO START

This code will produce the following output:

TSTPRINT Program Variables on Thu 06-Feb-1992
Signed Integer [;SI] = -98765 (7 digits)
Signed Integer [;SI] = -98765. (default format)
Signed Integer [;SI] = -98 (left 3 digits)
Signed Integer [;SI] = 765. (right 4 digits)
Floating Point [;FP] = 1.234567E+14 (scientific)
Fixed Point [;FX] = 85.456 (default format)
Percent [;PC] = 99.2% (float with percent symbol %)
Referenced Object Ref (0) TSTLOG;PC = 99.2 (with name)
The first string from \SPL\SPL.TXT (0-based) = User-definable text strings

%Yx%
current year of century,
if x=2 then last two digits, (90, 91, etc.)
if x=4 then full year, (1990, 1991, etc.)

Table 2-2 Format Specifiers Used by ALARM, LOG, JOB and PRINT Statements

SECTION 2: SPL PROGRAM STATEMENTS PRINTING, LOGGING, AND ALARMS

SPL User Manual (3/16/2007) 2-19

2.8.2 LOG STATEMENT (SAGE)

LOG logfilename,"formatstring",x,x,x...x,x,x

where:
logfilename is complete pathname of a text file to which the text output will be appended
formatstring contains a base text string with format specifiers that determine the representation of

the corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expressions to print

The LOG statement is used to send text output to a file. In the syntax of the LOG statement, the
logfilename argument represents a complete pathname of a text file to which the text output will be
appended. If logfilename does not exist, it will be created. The formatstring field of the LOG statement
contains a base text string with format specifiers that determine the representation of the corresponding
expression in the list of expressions (x,x,x...x,x,x) which follow the format string. A list of format specifiers
is shown in Table 1-7.

The following code illustrates the use of the LOG statement.:

; -
; This program illustrates a very simple logger/spooler.
; -

ATTR PT,0FFh
ATTR FP,0E0h
ATTR SI,0FFh
ATTR FX,0F9h
ATTR PC,0E0h

START: ;PT = -1
SWAIT 1

WAIT: IF ((;PT < 0) OR (;PT > 13)) THEN START
;FP = 1.234567E14
;SI = -98765
;FX = 85.456
;PC = 99.2E0

;First LOG the formatted print statements to a file.

LOG \LOG\TSTLOG.LOG,“ TSTLOG Program Variables on %W% %D%-%M3%-%Y4%”
LOG \LOG\TSTLOG.LOG,“ Signed Integer [;SI] = %I7% (7 digits)%13%%10%”,;SI
LOG \LOG\TSTLOG.LOG,“ Signed Integer [;SI] = %?% (default format)%13%%10%”,;SI
LOG \LOG\TSTLOG.LOG,“ Signed Integer [;SI] = %?L3% (left 3 digits)%13%%10%”,;SI
LOG \LOG\TSTLOG.LOG,“ Signed Integer [;SI] = %?R4% (right 4 digits)%13%%10%”,;SI
LOG \LOG\TSTLOG.LOG,“ Floating Point [;FP] = %?% (scientific)%13%%10%”,;FP
LOG \LOG\TSTLOG.LOG,“ Fixed Point [;FX] = %?% (default format)%13%%10%”,;FX
LOG \LOG\TSTLOG.LOG,“ Percent [;PC] = %F3.1% %% (float with percent
LOG \LOG\TSTLOG.LOG,“ Referenced Object Ref (0) %R% = %?% (with
LOG \LOG\TSTLOG.LOG,“ The first string from \SPL\SPL.TXT (0-based) = %S%”,1

;Now spool the file to port [;PT] immediately.

SPOOL ;PT, \LOG\TSTLOG.LOG
GOTO START

PRINTING, LOGGING, AND ALARMS SECTION 2: SPL PROGRAM STATEMENTS

2-20 SPL User Manual (3/16/2007)

2.8.3 ALARM STATEMENT

ALARM classexpr,"formatstring",x,x,x...x,x,x

where:
classexpr represents the alarm class code (0-255) to be applied to the text message
formatstring is a base text string with format specifiers that determine the representation of the

corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expressions to be formatted by formatstring

The ALARM statement is used to send text to the Alarm Log (ALOG) task for alarm processing. In the
syntax of the ALARM statement (see Figure 11-5), the classexpr expression represents the alarm class
code (0-255) to be applied to the text message. This class code is used by the ALOG task to determine
how to process the alarm message. The formatstring field of the ALARM statement contains a base text
string with format specifiers that determine the representation of the corresponding expression in the list of
expressions (x,x,x...x,x,x) which follow the format string. The code below illustrates examples of the
ALARM statement in use.

#SAGE
;
ATTR ;KW, 253
ATTR ;RL, 255
A=1234
B=29
C=19
[;KW] = 5.0
[;RL] = 300
 :
ALARM B,"Peak Usage ---> %F1.5% KW",[;KW]
ALARM C+11, "Maintenance check for unit%I5% at %I3% hours.",A,[:RL]
ALARM 030,"!This is the%I1%nd time around",2

Figure 2-1 shows the printed results of the statements shown in the code above. Table 2-2 lists the format
specifiers that are supported by the SAGEMAX.

Figure 2-1 Printed Results from the ALARM Statement Example Code

When ALOG processes a message sent to it through the ALARM statement, it automatically adds a
transaction number, source code, class, day, date and time information in front of the message before
routing it, unless the message is preceded by an exclamation point (!).

00013/00000 029 Mon 09-Feb-91 12:34:56
- 029 Peak Usage --> 5000.00000 KW
00023/00000 030 Mon 09-Feb-91 12:35:01
- 030 Maintenance check for unit 1234 at 300 hours.
- 030 This is the 2nd time around

SECTION 2: SPL PROGRAM STATEMENTS PRINTING, LOGGING, AND ALARMS

SPL User Manual (3/16/2007) 2-21

By using an exclamation point (!) in the format string, an alarm continuation line is generated. Alarm
continuation lines begin with a hyphen (-), contain the class and the message text and must follow an
alarm line. See the example code shown above.

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-22 SPL User Manual (3/16/2007)

2.9 JOB EXECUTION (SAGE)

The SPL provides execution of any job file within the SAGE execution environment. SAGE jobs are files
with the extension .JOB and include RPT.JOB, SPOOL.JOB, et al. Normally SPOOL jobs are executed
by using the native SPL SPOOL command. Note that the classexpr in the JOB command line is required,
but is currently not used; it should be specified as 0 for now.

2.9.1 THE REPORT JOB

SPL provides enhanced report generation capabilities through the REPORT job using the JOB “RPT”
statement. The RPT format of the JOB statement is used to issue an “as soon as possible” request to the
SAGEMAX scheduler to generate a report.

The REPORT job is used to merge a text template file with a file containing data values to produce a final
report file. This report file may be printed or saved for later reference.

Reports are created by first creating the text template file. This file contains the basic, underlying text of
the report. The text file identifies locations to be filled in with data by including special place holders called
format specifiers (see Table 2-2).

The data file may be either a SAGEMAX table file (.TBL) or a trend file. The resulting output file is all text.

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-23

Figure 2-2 Program TSTRPT.SPL Illustrating the JOB "RPT" Statement

JOB 0,“RPT templatepath, valuepath, reportpath”,x,x,x...x,x,x

Used to request a report job “as soon as possible.” Creates the file specified by the path reportpath from the
template file specified in the path templatepath while replacing every %...% token with the next expression in the list
x,x,x...x,x,x which is contained in the file specified by the path valuepath. Job statement arguments have the
following meanings:
template-name of the ASCII text template file
valuepath-data file that contains values in CSV, TBL or TRN format
reportpath-the ASCII text output report file
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX submits
the job to the SAGE job scheduler.

; -
; This program is a simple report printer using JOB “RPT ...” and JOB “SPOOL ...” assuming
; that the data has already been collected. This program prints either at the start of a new day or
; on demand. This simplifies preset on-demand report generation for an operator by allowing him
; to set a program attribute rather than submit a JOB through the SAGE menuing system. This
; also allows generation of the report through a host such as EtherView.
;
; Scheduling of the report generation/spooling can also be accomplished through the SAGE
; menuing system. The report generation at midnight is included here to illustrate the use of the
; BETWEEN statement.
;
;Attributes: PT request to print report, if <> -1 , PT is the port to spool to
; DP default port for auto-printing
; -

ATTR PT,0FFh
ATTR DP,0FFh

START: ;DP = 13
; -
;If we restarted between midnight and 1:00 AM, then do report now.
; -
IF (BETWEEN (0:00, 1:00)) THEN REPORTA
RSTART: ;PT = -1

D = DAYOFYEAR

TOP: L = 60
WAITMIN: IF (;PT <> -1) THEN REPORTM

SWAIT 1
LOOP L,WAITMIN

; -
;Check for day rollover every 60 seconds. Use D register to keep the current Julian
;day. If D is not the same as the current Julian day, then it is time to auto report.
; -

IF (D == DAYOFYEAR) THEN TOP
; -
;Auto-print. Set ;PT to default port
; -
REPORTA: ;PT = ;DP
; -
;Submit RPT job request then SPOOL job on port ;PT
; -
REPORTM: JOB 0,“RPT \LOG\TSTRPT.TMP,\TABLES\TSTRPT.TBL,\LOG\TSTRPT.RPT”

JOB 0,“SPOOL %I2%, \LOG\TSTRPT.RPT”,;PT
GOTO RSTART

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-24 SPL User Manual (3/16/2007)

Figure 2-2 illustrates the syntax of the JOB statement for a sample report (RPT) job. The template file,
table file and output file are shown in Figure 2-3, Figure 2-4, and Figure 2-5, respectively.

Figure 2-3 Sample Template File C:\LOG\TSTRPT.TMP

Figure 2-4 Sample Table File C:\TABLES\TSTRPR.TBL

O P T I M I Z E D S T A R T R E P O R T
Date: %w% %d%-%m3%-%y4% Time: %t5%

TODAY’S AVERAGE OUTSIDE AIR TEMPERATURE : %?% deg F
TODAY’S LOW OUTSIDE AIR TEMPERATURE : %?% deg F
TODAY’S HIGH OUTSIDE AIR TEMPERATURE : %?% deg F

LOCATIONOPT. START OPT. STOP RUN HRS MAINT
AHU 1 - Building A%?% %?% %I5% %I5%
AHU 2 - Building A%?% %?% %I5% %I5%
AHU 3 - Building A%?% %?% %I5% %I5%

Table: C:\TABLES\TSTRTP.TBL contains 19 entries, 5 bytes per entry.

Index | DT | Value
- -

0: [FDH] 51.0
 1: [FDH] 31.0
 2: [FDH] 59.7
 3: [E6H] 07:30
 4: [E6H] 16:45
 5: [FEH] 2010
 6: [FEH] 3000
 7: [E6H] 06:45
 8: [E6H] 17:00
 9: [FEH] 1099
10: [FEH] 2200
11: [E6H] 06:45
12: [E6H] 17:30
13: [FEH] 2200
14: [FEH] 2122

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-25

Figure 2-5 Sample Output File C:\LOG\TSTRPT.RPT

2.9.2 THE SPOOL JOB
The SPOOL format of the JOB statement is used to issue an “as soon as possible” request to the
SAGEMAX scheduler to print out (spool) a particular file. Typically the request will be sent to the line printer
task (LPT). Other types of tasks also support SPOOLing services. For example, the PHPHDial driver
responds to SPOOL requests by dialing a particular telephone number and then printing the file once the
connection is established.

SPOOL can be executed as a job under SPL. Figure 2-6 illustrates the syntax of the JOB statement for a
SPOOL job in conjunction with an RPT job and shows the syntax of the SPOOL job statement.

Figure 2-6The JOB "SPOOL" Statement

**
O P T I M I Z E D S T A R T R E P O R T

Date: Wed 12-Feb-1992Time: 11:05

TODAY’S AVERAGE OUTSIDE AIR TEMPERATURE : 51.3 deg F
TODAY’S LOW OUTSIDE AIR TEMPERATURE : 31.0 deg F
TODAY’S HIGH OUTSIDE AIR TEMPERATURE : 59.7 deg F

LOCATION OPT. START OPT. STOP RUN HRS MAINT
AHU 1 - Building A07:30 16:45 2010 3000
AHU 2 - Building A06:45 17:00 1099 2200
AHU 3 - Building A06:45 17:30 2200 2122

**

JOB 0,“SPOOL port pathname /D /B /Sbaud /Ntelephonenum”,x,x,x...x,x,x

Used to request a spool (print) job “as soon as possible.” Arguments have the following meanings:

port-specifies the SAGE port number (0-31) that provides a spool service
pathname-valid DOS pathname of the file to be spooled
/D-optional switch used to delete pathname after printing
/B-optional switch used to add banner line information to printed listing
/Sbaud-optional switch used to specify baud rate for dialout (300, 600, 1200, 2400,4800, 9600, 19200, 38400). If not
used, the default is 2400.
/Ntelephonenum-optional dialout phone number used to specify destination for dialout port. Valid telephone number
characters include 0-9, # and *.
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX
submits the job to the SAGE job scheduler.

; -
; This program segment is taken from the complete program in. It illustrates the
; use of the JOB “SPOOL” statement. Note the use of the ;PT attribute as a variable used by
; the SPOOL statement.
; -

:
REPORTM:JOB 0,“RPT \LOG\TSTRPT.TMP,\TABLES\TSTRPT.TBL,\LOG\TSTRPT.RPT”
 JOB 0,“SPOOL %I2%, \LOG\TSTRPT.RPT”,;PT

:

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-26 SPL User Manual (3/16/2007)

The port argument refers to any SAGEMAX port number which provides spool services. The pathname
argument may be any valid DOS pathname.

The /S and /N switches are only relevant for dial-out purposes. If the baud rate is not specified for a dial
out port, it will default to 38400 baud. The telephone number defaults to none which would be ignored by
a dial-out port. The telephone number is specified as a sequence of digits, possibly including # and *. You
are not permitted to use dashes, parentheses or spaces in the telephone number.

.

Note that there may be a significant difference when a file is printed using a SPOOL statement versus a
JOB “SPOOL...” statement. The latter submits a SPOOL job to the SAGEMAX job scheduler while the
former submits a SPOOL command directly to the port task. In the latter case, if there are jobs in the
schedule queue, the new SPOOL job will not be submitted to the port immediately. If you are generating a
report that needs to be SPOOLed in the same program, you should use the JOB “SPOOL...” statement to
make sure that the report is finished before it is SPOOLed, i.e., the SPOOL job is inserted into the job
queue after the REPORT job.

2.9.2.1 THE BROADCAST JOB
The broadcast job (BC) is used to issue an “as soon as possible” broadcast of message text to the
SAGEMAX scheduler to a specified SAGEMAX unit number on a specified SAGEMAX port.

Figure 2-7 illustrates the syntax of the JOB statement for broadcast (BC) jobs.

CAUTION
Dashes, parentheses and spaces may not
be used within the Ntelephonenum argu-
ment.

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-27

Figure 2-7 The JOB "BC" Statement

2.9.3 THE DATA CAPTURE /DATA STUFF JOB

The data capture/data stuff job (DCS) is used to create an “as soon as possible” request to the SAGE
scheduler gather real-time values (capture) from a list of named object attributes, and/or modify values
(stuff) from a list of named object attribute/value pairs.

Captured data may be formatted into several forms for later use. The captured data may be stored in
Comma Separated Value (CSV) format which is useful for Lotus or Excel. As an alternative, data may be
stored in a format suitable for use as a Data Stuff input file for use at a later date. During data stuffing, an
audit file can be created to record the success or failure of each stuff.

Figure 2-8 illustrates the syntax of the JOB statement for data capture/stuff (DCS) jobs along with several
SPL programming examples.

JOB 0,“BC port/unit/message”,x,x,x...x,x,x

Used to request a broadcast message job “as soon as possible.” Broadcast job statement arguments have the
following meanings:

port-SAGE port number of broadcast destination
unit-device unit number of broadcast destination or SAGE peername
message-message text to be broadcast
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX
submits the job to the SAGE job scheduler.

; -
; This program is a simple broadcaster program that can submit a broadcast request on demand.
; This simplifies the broadcast process and allows it to be done from a host such as EtherView.
;
;Attributes:RQ<>-1 means request a broadcast on this port
; UN unit (-1 is broadcast to all units on port RQ)
; -

ATTR RQ,0FFh
ATTR UN,0FFh

START: ;RQ = -1
WAITRQ: IF (;RQ <> -1) THEN BCAST

SWAIT 1
GOTO WAITRQ

BCAST: IF (;RQ >13) THEN START
IF (;UN == -1) THEN BCAST2
JOB 0,“BC %I2%/%I5%/This is a message for a specific unit”;[;RQ],[;UN]
GOTO START

BCAST2: JOB 0,“BC %I2%/-/This is a critical message for all units”;[;RQ],[;UN]
GOTO START

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-28 SPL User Manual (3/16/2007)

Figure 2-8 The Job "DCS" Statement

The Points Definition File (.PDF file) contains lines of text which adhere to one of several possible formats.
The lines may be up to 128 characters long before the carriage return and linefeed. Extra characters will
be ignored. The seven possible line formats for .PDF files are:

 ;comment line
 >pathname
 >>pathname
 objectname,description
 !pathname
 !!pathname
 objectname=value

JOB 0,“DCS pathname /S/D”,x,x,x...x,x,x

Used to request a broadcast message job “as soon as possible.” Broadcast job statement arguments have the
following meanings:
pathname-an ASCII text file with a valid DOS name and extension .PDF which is a pointsdescription file.
/S-optional switch to specify captured data in Stuff file format(default is Comma Separated Variable or CSV format is
blank)
/D-optional switch which turns on debug tracing
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX submits
the job to the SAGE job scheduler.

; -
; This program illustrates a simple data collection. It is used to submit a data collection job
; request when it is a holiday. In this program, “holiday” is defined to be whenever the SAGE
; global calendar $MODE variable is 255 and the time is between 00:00 and 00:30. This can
; also be submitted on demand by an operator or host such as EtherView.
;
;Attributes: RQ<> 0 means request a data collection
; -
ATTR RQ,0FFh
; If we restarted between midnight and 12:30 AM AND
; $MODE = 255, then do collection immediately.
START: IF (($MODE == 255) AND (BETWEEN (0:00,0:30))) THEN COLLECT

RSTART: ;RQ = 0
D = DAYOFYEAR

TOP: L = 60
WAITMIN: IF (;RQ <> 0) THEN COLLECT

SWAIT 1
LOOP L,WAITMIN

; Check for holiday ($MODE=255) and time between 0:00 and 0:30 every 60 seconds. Use D register to
; keep the current Julian day. If D is the same as the current Julian day, then we’ve done the collection for
; that day.

IF (D == DAYOFYEAR) THEN TOP
IF (($MODE == 255) AND (BETWEEN (0:00,0:30))) THEN COLLECT ELSE TOP

COLLECT:JOB 0,“DCS \LOG\HOLIDAY.PDF”
GOTO RSTART

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-29

Lines which begin with a semicolon (;) character are treated as comment lines and are ignored by DCS.

The >pathname format causes further data capture list output to be directed to the file pathname. If
pathname does not exist, then it will be created. The pathname can contain wildcards as described later in
this section.

The >>pathname format cause further data capture list output to be appended to the file pathname. If
pathname does not exist, then it will be created. The pathname can contain wildcards as described later in
this section.

The objectname,description format will read (capture) the named object/attribute and output its value to
the list output file. If the /S switch is present in the job string, then the output is formatted in a form that is
suitable for subsequent use as a data stuff .PDF file. The description is any arbitrary text, presumably
used to describe the named object in more detail.

The !pathname format causes data stuff audit output to be directed to the file pathname. If pathname does
not exist, then it will be created. The pathname can contain wildcards as described in the following
sections.

The !!pathname causes data stuff audit output to be appended to the file pathname. If pathname does not
exist, then it will be created. The pathname can contain wild cards as described later in this section.

The objectname=value format is used to write (stuff) the named object attribute with the new value. The
acceptable formats for the new value are described in Table 2-3. If there is an open data stuff audit file,
then a confirming message is output to it showing the object name, the stuffed value and the success/
failure of the stuff operation. If the stuff is successful, then only the object name and value are output to
the audit file. If the operation fails, then the line in the audit file also has a trailing error message that
explains the error.

Table 2-3 Formats for Values When Data Stuffing

 Format Notes

##########. signed integer numbers

#########.# signed fixed point
integers

########.## "

#######.### "

######.#### "

#####.##### "

####.###### "

###.####### "

##.######## "

#.######### "

.########## "

##.##R floating point numbers

##.##E ±##R floating point numbers

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-30 SPL User Manual (3/16/2007)

Objectname is the name of an object and attribute to be captured or stuffed. This name can have one of
the formats shown below:

 \ objecttype \ objectname ; attribute
 objectname ; attribute
 \ objecttype \ objectname
 objectname

The objecttype is a two character mnemonic (PT, VR, GL, PG, etc.). If missing, the correct type will be
determined by a search of all object types as shown in the following order: Points, Programs, Variables,
and Globals.

The data capture list and data stuff audit output files contain information in ASCII text format, which can be
edited with normal text editing programs.

For data capture list files, if the /S option in the job string is not selected, information is formatted in
Comma Separated Variable (CSV) format, which can be read by many popular programs. The listing
contains a header line which identifies the time and date when the information was fetched and the
pathname of the .PDF file. In general, each line of the output file contains three fields: point name, point
description and value. The point name and description fields are quoted text, while the value field is the
number that was fetched.

For example:

 “SOMEPOINT;AT”,“A description”,75.3

Alternately, if the /S option in the job string is selected, information is formatted for data stuffing. For
example:
 SOMEPOINT;AT=75.3

The .PDF file can contain as many lines as desired. There is no limit to the number of times that the list
output may be redirected. The pathname for list/audit output is verified before a new list output file is
opened or appended. This means that DCS checks for the existence of each sub-directory in the
pathname. If a sub-directory does not exist, then it is created automatically by DCS.

########H hex numbers

########B bitmap

##:## BCD short time format

##:##:## BCD long time format

Yes/No yes=1, no=0

On/Off on=1, off=0

Table 2-3 Formats for Values When Data Stuffing

 Format Notes

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-31

The >, >>, ! and !! formats allow the percent (%) character to appear in the pathname. If it is used, the %
character must be followed by a single letter code which indicates one of the time and date values shown
in Table 2-4. You can specify any combination of these time and date codes in conjunction with normal
pathname characters to form unique time/date-based pathnames for DCS files. This allows the generation
of time-ordered files by DCS. Since DCS automatically creates sub-directories, you may freely use these
% codes in sub-directory names, if desired.

For example, the pathname

 >\LOG\%W%K%H%M.PRN

might be used as the name of a data capture list file which was run every day, perhaps several times a day.
The resulting files would show the week of the year (%W), day of the week (%K), and time (%H%M) as the
file name, e.g., 14021335.PRN.

2.9.3.1 THE UPLOAD / DOWNLOAD FILE JOB
The upload/download file (UDL) job is used to transfer files between a SAGEMAX and a network device
such as another SAGEMAX, a STAR peer or an XANP or PHP device.

Downloading files from a SAGEMAX to a network device may occur between any existing SAGEMAX

drive:\file.ext and any valid network device file. The download service is used to open a (source) file on
the SAGEMAX, create a (destination) file on the network device, and write each record from the source file
to the destination file until all source file records have been read and downloaded.

CAUTION
You must be careful to use the >, >>, ! and !!
formats correctly, since they may overwrite
existing files!

Table 2-4 Wildcards Used in >, >>, ! and !! Pathnames

% Code Time Unit Digits Generated

N month 01-12

D day of month 01-31

C year of century 00-99

Y year e.g., 1991

H hour 00-23

M minute 00-59

W week of year 01-52

K day of week 1-7, 1=SUN

J day of year 001-366

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-32 SPL User Manual (3/16/2007)

Uploading files from a network device to a SAGEMAX may occur between any existing network device file
and any valid (DOS) SAGEMAX file. The upload service is used to open a network device (source) file,
create a SAGEMAX (destination) file, and write each record from the source file to the destination file until all
source file records have been uploaded and written.

The syntax of the upload/download file (UDL) job is illustrated in Figure 2-9 with sample SPL programming
examples.

Figure 2-9 The JOB "UDL" Statement

The t refers to the function type and is either a U for upload or a D for download. Port refers to the
SAGEMAX port number to which the network is connected. Peername is the SAGEMAX Ethernet peer name
or peer unit number for the network device. Delimiter is either a front slash (/), a colon (:) or a backslash (\)
character. Remotepath is either a DOS pathname if the network device is a SAGEMAX peer, or
drive:file.ext for other devices. Localpath is the local DOS pathname of the file in the format
drive:\path\file.ext.

2.9.3.2 THE EXPORT DATABASE FILE JOB
The export database file (EXPORT) job is used to export name bindings files (.NBF) by reading and
translating SAGEMAX-resident binary object files (.BOB). Name bindings files are editable ASCII text files
that contain text representations of the objects which exist in a binary form within SAGEMAX .BOB files.

JOB 0,“UDL t port peername delimiter remotepath localpath”,x,x,x...x,x,x

Used to request a file upload/download job “as soon as possible.” UDL job statement arguments have the following
meanings:

t-type of file service, where U is upload and D is download.
port-the SAGE port number to which the network device is connected.
peername-represents the SAGE Ethernet peername or peer unit number for the network device.
delimiter-:, / or \ character
remotepath-either a standard DOS pathname if the network device is a SAGE peer or drive:file.ext for other peers.
localpath-the local DOS pathname of the file in drive:\path\file.ext format.
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX
submits the job to the SAGE job scheduler.
; -
; This program illustrates a simple uploader and downloader. This program allows you to submit,
; on demand, a file upload request followed by a file download request. The upload/download is
; from/to a peer on the Ethernet (e.g., EtherView or other SAGEs). This simplifies the file
; upload/download process and allows it to be done from a host such as EtherView.
;
;Attributes: RQ<>0 requests an upload/download
; -
ATTR RQ,0FFh

START: IF (;RQ <> 0) THEN UL_DL
SWAIT 1
GOTO START

UL_DL: JOB 0,“UDL U 14 SAGE Peer #12/C:\LOG\SOMEFILE.LOG C:\LOG\LOG1.LOG”
JOB 0,“UDL D 14 EtherView Host Peer #1/C:\DATA\SOMEFILE.LOG C:\LOG\LOG1.LOG”
;RQ = 0
GOTO START

SECTION 2: SPL PROGRAM STATEMENTS JOB EXECUTION (SAGE)

SPL User Manual (3/16/2007) 2-33

The EXPORT job can create the new .NBF file on any valid DOS path. EXPORT reads .BOB files from
the \CFG directory. Figure 2-10 illustrates the syntax of the EXPORT job statement and shows sample
SPL program examples.

Figure 2-10 The JOB "EXPORT" Statement

JOB 0,“EXPORT nbfpath /switch /switch ... /switch”,x,x,x...x,x,x

Used to request an export name bindings files job “as soon as possible.” EXPORT job statement arguments have the
following meanings:

nbfpath-represents the full .NBF pathname which may include an extension, but will be ignored and .NBF will be
added.
/switch-series of optional switches that represent the type of .BOB files to search for in the \CFG directory. If no
switches are listed, then all .BOB files are searched.
x,x,x...x,x,x-expressions whose values are inserted into the jobstring text in place of format specifiers when PEX
submits the job to the SAGE job scheduler.

; -
; This program allows you to submit, on demand, a database export request. This may be the
; entire database or the points, variables, programs or globals individually. This simplifies the
; export process and allows it to be done from a host such as EtherView.
;
; Attributes: RQ =0 do nothing
; =1entire database
; =2 points only
; =3 variables only
; =4 programs only
; =5 globals only
; -

ATTR RQ,0FEh

START: ;RQ = 0
WAITRQ: ON [;RQ] GOTO NONE, ALL, POINTS, VARS, PROGS, GLOBS
NONE: SWAIT 1

GOTO WAITRQ

; Export entire database
ALL: JOB 0,“EXPORT \BACKUP\DATABASE.NBF”

GOTO START

; Export points only
POINTS: JOB 0,“EXPORT \BACKUP\DATABASE.NBF -PT”

GOTO START

; Export variables only
VARS:JOB 0,“EXPORT \BACKUP\DATABASE.NBF -VR”

GOTO START

; Export programs only
PROGS:JOB 0,“EXPORT \BACKUP\DATABASE.NBF -PG”

GOTO START

; Export globals only
GLOBS:JOB 0,“EXPORT \BACKUP\DATABASE.NBF -GL”

GOTO START

JOB EXECUTION (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-34 SPL User Manual (3/16/2007)

The nbfpath is a full pathname which may include an extension, however the extension is ignored and
.NBF is added. If no switches are specified, then the SAGEMAX will search in the \CFG directory for all of
the .BOB files understood by EXPORT. If switches are specified, SAGEMAX will search for only those
.BOB files specified. EXPORT recognizes the following switches:

 PT points
 VR variables
 PG programs
 GL globals

SECTION 2: SPL PROGRAM STATEMENTS SPOOLING REPORT AND LOG FILES (SAGE)

SPL User Manual (3/16/2007) 2-35

2.10 SPOOLING REPORT AND LOG FILES (SAGE)
2.10.1 SPOOL STATEMENT

SPOOL portexpr,pathname,{DELETE}

where:
portexpr specifies the port number where the file is to be SPOOLed
pathname is specifies the path and filename of the file to be SPOOLed
DELETE specifies whether to delete the file after spooling

The mechanism for spooling report and log files created by the RPT and LOG commands, is via the
SPOOL command. The SPOOL command causes the specified port to begin printing the file as soon as it
can. The SPOOL statement is used to send log files that were created by LOG statements to a specified
port.

The portexpr argument specifies the port number where the file is to be SPOOLed.

The pathname argument specifies the path and filename of the file to be SPOOLed.

If the DELETE argument follows the filename, then the file will be deleted upon completion of the spool. If
the DELETE argument is used with this command, then the file will be deleted after it is SPOOLed.

The code below illustrates the use of the SPOOL statement in an SPL programming example:

LOG C:\ValFile.TXT,"Value is %I2% and",A
LOG C:\ValFile.TXT,"Setpoint is %F2.1%",B
LOG C:\ValFile.TXT,"at %T5% on %W%."
LOG C:\ValFile.TXT,"%13% %10%"
SPOOL 13,C:\ValFile.TXT

TRENDING CONTROL STATEMENTS (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-36 SPL User Manual (3/16/2007)

2.11 TRENDING CONTROL STATEMENTS (SAGE)
2.11.1 STARTTREND & STOPTREND STATEMENTS

STARTTREND trendname
STOPTREND trendname

where:
trendname is the name of a trend file fragment that can be up to 17 characters long

The STARTTREND and STOPTREND statements are used to start or stop data collection for the specified
trend. The trend must be created prior to the execution of the STARTTREND or STOPTREND
statements.

The trendname argument represents a trend file fragment that can be up to 17 characters long. All trends
are file images that are contained in the directory C:\TREND and have the file extension .TRN. The
complete pathname is C:\TREND\trendname.TRN.

The code below illustrates the use of the STARTTREND and STOPTREND statements and shows a
sample SPL programming example:

L0: WAIT (DAY==1)
MWAIT 30
STOPTREND GET_KW
JOB 0,"RPT KWTEMP,C:\TREND\GET_KW.TRN,KW"
JOB 0,"SPOOL 13,C:\RPT\KW.RPT"
STARTTREND GET_KW
WAIT (DAY<>1)
GOTO L0

SECTION 2: SPL PROGRAM STATEMENTS PROGRAM EXECUTION STATEMENTS (SAGE)

SPL User Manual (3/16/2007) 2-37

2.12 PROGRAM EXECUTION STATEMENTS (SAGE)
2.12.1 ACTIVATE STATEMENT

ACTIVATE programname

where:
programname is the name of the program to be activated

The ACTIVATE statement is used to load an inactive program into memory (if necessary), and begin
executing its logic. This statement will not restart a program that is already running, but will restart a
program that has been aborted. If a program has been stopped, ACTIVATE will start the program at that
point. The program to be activated is a database object, i.e., a program name as described in Section 1.3:
Program Names.

The code below illustrates the use of the ACTIVATE statement in an SPL program:

IF (TIME>=5:00) THEN Wmup
ACTIVATE Coast
GOTO End

Wmup: ACTIVATE Warmup1
End: STOP

2.12.2 DEACTIVATE STATEMENT

DEACTIVATE programname

where:
programname is the name of the program to be deactivated

The DEACTIVATE statement allows you to remove a program from memory (RAM). This may free
memory space for other programs. The program to be DEACTIVATEd is a database object, i.e., a
program name as described in Section 1.3: Program Names.

The code below illustrates the use of the DEACTIVATE statement in a simple SPL program segment:

ATTR SD,0FEh

L1: If ;SD=0 Then L1
DEACTIVATE OSS1
DEACTIVATE OSS2
DEACTIVATE OSS3
STOP

2.12.3 THE RESTART STATEMENT

RESTART programname

PROGRAM EXECUTION STATEMENTS (SAGE) SECTION 2: SPL PROGRAM STATEMENTS

2-38 SPL User Manual (3/16/2007)

where:
programname is the name of the program to be restarted

The RESTART statement is a program control command that is used to restart program execution from
the beginning, as if it had just been loaded. RESTART can also activate a deactivated program and start it
from the beginning. If a program is unloaded, RESTART causes it to be loaded then restarted.

The RESTART command is also used to start a program that has been suspended by a STOP statement.
The program that is RESTARTed is a database object, i.e., a program name as described in Section 1.3:
Program Names.

The code below illustrates the syntax of the RESTART statement and shows a simple SPL programming
example:

L0: WAIT (DAY==1)
CALL ENDMONTH
JOB 0,"RPT kwtemp,kwvals,kw"
RESTART KW_CALC
WAIT (DAY<>1)
GOTO L0

2.12.4 STOP STATEMENT

STOP programname

where:
programname is the name of the program to be stopped

The STOP statement is used to halt program execution, maintaining it in a suspended state. If a program
name is not included with the STOP statement, the current program is halted. Otherwise, the specified
program is halted. To resume program execution from a halted state, you must use the RESTART or
ACTIVATE statements.

The code below illustrates the syntax of the STOP statement and shows a sample SPL programming
example:

IF (TIME>=5:00) THEN Wmup
ACTIVATE Coast
GOTO End

Wmup: STOP SETBACK
ACTIVATE Warmup1

End: STOP

2.12.5 UNLOAD STATEMENT

UNLOAD

SECTION 2: SPL PROGRAM STATEMENTS PROGRAM EXECUTION STATEMENTS (SAGE)

SPL User Manual (3/16/2007) 2-39

The UNLOAD statement is used to remove this program from memory (RAM). This frees memory space
for other programs.

If the program's PLB is sticky, it is not unloaded, but the program is put in the unload state.

EXECUTION ERROR CONTROL SECTION 2: SPL PROGRAM STATEMENTS

2-40 SPL User Manual (3/16/2007)

2.13 EXECUTION ERROR CONTROL

2.13.1 ERRORABORT STATEMENT

ERRORABORT

The ERRORABORT statement is an error control statement that causes the program executor to abort the
program when any trappable or non-trappable error is detected. (See also Section 2.13.2:ERRORWAIT
Statement and Section 2.13.3:ONERROR Statement).

There can be multiple ERRORABORT and ERRORWAIT statements within a program. This allows the
aborting of errors to be turned on and off. Unless an ERRORWAIT statement is included in a program, the
ERRORABORT statement is in effect.

All errors that are not trappable (e.g., no such object name, invalid operation, etc.) will always cause the
program to be aborted.

The code below illustrates the syntax for the ERRORABORT statement and shows its use in a simple SPL
program segment:

ERRORABORT
;CV = [\PT\Zone Temp;ZT]
Print 13,0, "We got it on the first try."
 :

2.13.2 ERRORWAIT STATEMENT

ERRORWAIT

The ERRORWAIT statement is an error control statement that allows the programmer to specify what PEX
should do when it encounters a trappable error. See Appendix B: SPL Error Codes (SAGE, DX, GX) for a
complete listing of which errors are trappable. If the ERRORWAIT statement is included in a program and
PEX detects a trappable error, then the statement that caused the trappable error is re-executed forever
until the error condition no longer exists. (See also Section 2.13.1: ERRORABORT Statement and Section
2.13.3: ONERROR Statement and Appendix B: SPL Error Codes (SAGE, DX, GX)).

There can be multiple ERRORWAIT and ERRORABORT statements within a program. This allows the
aborting of errors and error waiting to be staggered throughout the program. Unless an ERRORWAIT
statement is included in a program, the ERRORABORT statement is in effect.

The code below illustrates the syntax of the ERRORWAIT statement and shows it being used in an SPL
program segment:

ERRORWAIT
Print 13,0, "Wait till we get a good value."
;CV = [\PT\Zone Temp;ZT]
Print 13,0, "We got a good value."
 :

SECTION 2: SPL PROGRAM STATEMENTS EXECUTION ERROR CONTROL

SPL User Manual (3/16/2007) 2-41

2.13.3 ONERROR STATEMENT

ONERROR label

where:
label is the label of the code to be executed when a trappable error occurs

The ONERROR statement identifies a label to which PEX transfers control whenever it detects a trappable
error (see Appendix B). The ONERROR statement is in effect only for the statement that precedes it. (See
also Section 2.13.1:ERRORABORT Statement and Section 2.13.2:ERRORWAIT Statement). When an
error is detected, the error code is placed in the program’s $E control attribute by PEX. ONERROR
statements take precedence over ERRORWAIT statements. The $E program control attribute should be
reset to zero before leaving the error code handler.

The code below illustrates the syntax of the ONERROR statement and shows an SPL programming
example.

Getit: ;$E = 0
A = ZONE_TEMP;CV
ONERROR Err

L1: B=A+10
 :

Err: IF (;$E<>5) THEN END
A=72.0
GOTO L1

End: STOP

NOTE
The ONERROR statement can only be used
with trappable errors such as a timeout, a
CRC or checksum error, NAK responses,
data rejection, temporarily blocked states,
dialer busy states and failed to connect
errors. Any other program execution errors
cause the program to abort.

DEBUGGING STATEMENTS SECTION 2: SPL PROGRAM STATEMENTS

2-42 SPL User Manual (3/16/2007)

2.14 DEBUGGING STATEMENTS

2.14.1 SECTION STATEMENT

SECTION number

where:
number is the number designation given to the section

The SECTION statement is a debugging statement that stores the number argument in the $S program
control attribute of the program. This command can be placed strategically at multiple locations in the
program to be debugged. By using unique numbers in the statements, you can track the progress of the
program through various logical sections by monitoring the $S program control attribute.

The code below illustrates the syntax of the SECTION statement and shows an SPL programming
example:

SECTION 1
A = REF (0)

L1: SECTION 2
B = B + REF (A-1)
LOOP L1
SECTION 3
 :

2.14.2 NOP STATEMENT

NOP

The NOP statement is used for low-level debugging and is normally not used in SPL programs. The
function of the NOP (or No OPeration) statement is to use up time and occupy program space.

SECTION 2: SPL PROGRAM STATEMENTS PROGRAM CONTROL ATTRIBUTES

SPL User Manual (3/16/2007) 2-43

2.15 PROGRAM CONTROL ATTRIBUTES
All program control attributes begin with the '$' and are referred to as the 'dollar attributes'. The program
control attributes are listed below, along with a brief description. Depending on the device you are using,
the existence of specific program control attributes differs. Please reference device user documentation
for additional information..

Table 2-5 Program Control Attributes

Control
Attribute Meaning

$$

Program status

0=Stop
1=Run
2=Unloaded
3=Abort
4=Time Delay
5=Restart
6=Load Request
7=Unload Request
8=Abort Request
9=Network Access
10=Reload Request

program execution is stopped
program is executing
program logic is not loaded into RAM
program has aborted due to a run-time error
program is waiting for an WMAIT or SWAIT statement to
timeout
initializes the program and starts executing it from the
beginning
request to load the program into RAM and begin execution
request to stop the program and unload it from RAM
PEX has encountered a run-time error and is aborting the
program
program is waiting for the completion of a network access
PEX has received a request to unload, reload and start a
program

$D Number of seconds remaining in time delay

$E Error code (0=no error) (Refer to Appendix B for a complete list of error codes)

$S Current section number

$C Program location counter in hexadecimal of next statement to be executed

$W Wait/Abort on trappable errors such as timeouts and CRC errors (see Appendix B)

$P Stack pointer used for the evaluation of nested expressions

$B Subroutine stack pointer contains 00h or return address of subroutine

$N Number of program attributes

$Z Paragraph pointer to Program Context Block (PCB)

$L Paragraph pointer to Program Logic Block (PLB)

$R Paragraph pointer to Program Reference Block (PRB)

$A Paragraph pointer to Program Attribute Block (PAB)

$I Paragraph pointer to pending Intertask Message (ITM)

$F Program code fetch state, 0=normal, <>0=fetching expressions

$X Expression state, 0=preexpr, 1=wait for aterm, 2=wait for bterm

$M Term state, 0=normal, 1=aterm, 2=bterm

$# Number of expressions in multiple expression term

PROGRAM CONTROL ATTRIBUTES SECTION 2: SPL PROGRAM STATEMENTS

2-44 SPL User Manual (3/16/2007)

The $$ attribute indicates the program's current operating status. The $$ attribute can have one of the
following values:

Stop indicates that the program has stopped and is no longer executing its program code. Run indicates
that the program is in the process of executing its program code. Unloaded indicates that the program
logic has not yet been loaded into memory. Abort indicates that the program has stopped due to a run-
time error. Wait for time indicates that the program has encountered an MWAIT or SWAIT statement in its
logic and is in a wait state. Restart indicates that the program has been initialized and is going to start
executing from its beginning. Load request indicates a signal for the program to be loaded into memory
(i.e., RAM) and to begin execution. Conversely, unload request indicates a signal for the program to stop
execution and unload (remove) itself from RAM. Abort request indicates the state prior to abort when the
program executor (PEX) encounters a run-time error and signals that it should be aborted. Network
access indicates that the program had executed either a network read or network write request and is
currently in the process of waiting for the network transaction to be completed. Reload request is used to
unload a program, then reload and start it.

Not all transitions from one $$ state to another are valid. The following matrix summarizes the valid state
transitions for the $$ attribute.

$H Hard disk access counter is incremented for every hard disk read or write

$1 Single step execution, 0=normal, 1=single step

$T Pointer to once-per-second routine

$G Debug break-point

Value State Description

0 Stop program execution is stopped

1 Run program is executing

2 Unloaded program logic is not loaded

3 Abort program has aborted due to a run-time error

4 Time Delay the program is waiting for an MWAIT or
SWAIT to timeout

5 Restart re-initializes the PCB and starts execution
at beginning of program

6 Load Request requests that the program logic be loaded
and the program started

7 Unload Request requests that the program be stopped and
the logic be unloaded

8 Abort Request PEX has encountered a run-time error and
is aborting the program

9 Network Access the program is waiting for the completion
network object read/write

Table 2-5 Program Control Attributes

SECTION 2: SPL PROGRAM STATEMENTS PROGRAM CONTROL ATTRIBUTES

SPL User Manual (3/16/2007) 2-45

The $E control attribute specifies the error code number of the previously executed program statement.
Normally this attribute equals zero (no error).

This special control attribute can be read as an attribute from the program and can be used to determine a
course of action should an error occur (i.e., $E <> 0). The example below illustrates the use of the $E
control attribute in a sample SPL program segment.

GETIT: ;$E = 0
A = [ZONE_TEMP;CV]
ONERROR ERR

ERR: IF ;$E==5 THEN GETIT
STOP

The $S control attribute is another special control attribute which reflects the current section number of the
program. The SECTION statement is used to set the $S attribute to any integer value (refer toSection
2.14.1:SECTION Statement). This control attribute can be used in diagnosing errors in your program
logic. By using SECTION statements at strategic locations in the logic (e.g., before and after loops,
conditional statements, calls to subroutines, etc.), you can check the progress of the program execution.
By examining the $S control attribute through OPI monitor/modify, you can determine if a particular
segment of code is getting executed. The example below illustrates the use of SECTION statements so
that the $S control attribute can be examined.

SECTION 1
CALL INITIALIZE
SECTION 2
CALL CALC_LOOP
SECTION 3
CALL PROCESS_LOOP
SECTION 4
CALL SUBMIT_JOB
SECTION 5
STOP

For logic errors that are especially difficult to diagnose, you may choose to use the single step mode of
execution (control attribute $1) in conjunction with the $E and $S control attributes. When set to single
step mode ($1=1), the program is executed one line at a time. The program must be set to the RUN state
($$=1) after each line of the program is executed. In some complex programs, this may be a helpful way
to determine if your program logic is doing what you really want it to do or if you are encountering a
program error. Using single step mode may also make it easier to follow the logic of large programs at a
statement-by-statement level.

The $$ control attribute reflects the current state of the program. This attribute can assume one of eleven
values representing one of eleven possible states for the program. These states are:

 0 - stop
 1 - run
 2 - unloaded
 3 - abort
 4 - wait for time
 5 - restart
 6 - load request
 7 - unload request
 8 - abort request

PROGRAM CONTROL ATTRIBUTES SECTION 2: SPL PROGRAM STATEMENTS

2-46 SPL User Manual (3/16/2007)

 9 - network access
 10 - reload request

Stop indicates that the program has stopped and is no longer executing its program code. Run indicates
that the program is in the process of executing its program code. Unloaded indicates that the program
logic has not yet been loaded into memory. Abort indicates that the program has stopped due to a run-
time error. Wait for time indicates that the program has encountered an MWAIT or SWAIT statement in its
logic and is in a wait state. Restart indicates that the program has been initialized and is going to start
executing from its beginning. Load request indicates a signal for the program to be loaded into memory
(i.e., RAM) and to begin execution. Conversely, unload request indicates a signal for the program to stop
execution and unload (remove) itself from RAM. Abort request indicates the state prior to abort when the
program executor (PEX) encounters a run-time error and signals that it should be aborted. Network
access indicates that the program had executed either a network read or network write request and is
currently in the process of waiting for the network transaction to be completed. Reload request is used to
unload a program, then reload and start it.

The $D control attribute reflects the number of seconds remaining in a time delay imposed by either an
SWAIT or MWAIT statement. When $D<>0, $$=4 (wait for time).

The $C control attribute indicates the program location counter. As the program executes, $C changes,
reflecting the relative memory location of the next program statement to be executed. $C is used primarily
for low-level troubleshooting and diagnosis of program errors.

The $N control attribute represents the number of user-defined program attributes that have been
declared. The $N control attribute will always equal the number of ATTR declarations within the program.

The $H control attribute displays the current count of the number of times the SAGEMAX hard disk has been
accessed by the program. It can be used to monitor the frequency of hard disk accesses by watching how
rapidly $H increases.

The $1 control attribute is used to set the single step mode of execution of a program. When set to 0,
program execution continues normally. If this attribute is set to 1 (single step mode), program execution
stops after each program line is executed. Once program execution is stopped, you can examine the
other control attributes, registers and user-defined program attributes. This may be very helpful in
troubleshooting and diagnosing hard-to-find errors in your program logic. The next line of program code
can be executed by setting $$=1 (the RUN state).

The $W, $P, $B, $Z, $L, $R, $A, $I, $F, $X, $M and $# attributes are used by PEX to control the execution
of the program. Although their meanings are summarized in Table 2-5, the programmer and/or operator
normally does not need to reference them.

 SPL User Manual (3/16/2007) 3-1

IN THIS SECTION

SECTION 3: USING SPL WITH BACNET

Introduction ..3-3
Fundamentals of SPL in BACnet3-4
 The PROP Statement......................................3-4
 Prop Statement Examples...............................3-4
 Floating Point Datatype Creation3-4
 Unsigned Integer Datatype Creation..........3-4
 Signed Integer Datatype Creation..............3-4
 Text Property Datatype Creation3-5
 Bitstring Property Datatype Creation..........3-5
 Time Property Datatype Creation...............3-5
 Date Property Datatype Creation3-5
 Enumerated Property Datatyype Creation .3-5
 NULL Property Datatype Creation3-5
Working with Object Properties............................3-6
 Referencing Objects..3-6
 Referencing Properties3-6
 Addressing Object Properties3-6
 Addressing User-Defined properties3-7
 Peer-To-Peer Addressing................................3-7
 Writing Values to Object Properties3-8
 Writing with Command Prioritization3-9
 Data Type Sensitivity with BACnet SPL........3-10
Advanced BACnet SPL Functions3-11
 The OID Function..3-11

 The BACNET Statement............................... 3-11

SECTION 3: USING SPL WITH BACNET

3-2 SPL User Manual (3/16/2007)

SECTION 3: USING SPL WITH BACNET INTRODUCTION

SPL User Manual (3/16/2007) 3-3

3.1 INTRODUCTION
SPL has features designed specifically for creating program that work with BACnet devices. From within
your program, you may define custom properties. These properties can be used within the program and
are also visible to other controllers on the BACnet network just like any other property in the controller.
Statements exist which allow you to reference properties that exist on the host controller as well as on
other controllers on the network. Functions exist that allow you can generate object identifiers during
program execution. These features combine seamlessly to allow you to work with any BACnet properties
from within your SPL program.

FUNDAMENTALS OF SPL IN BACNET SECTION 3: USING SPL WITH BACNET

3-4 SPL User Manual (3/16/2007)

3.2 FUNDAMENTALS OF SPL IN BACNET
The following section illustrates standard fundamentals for writing SPL programs for NB-GPC Family
products. While the information in the previous sections provide explicit information behind the underlying
functionality of each statement and its usage, this section will provide a more simplistic approach to
learning how to write SPL for NB-GPC Family products.

While the following information provides only a few statements, the majority of existing functions in SPL
can obviously be used with BACnet.

3.2.1 THE PROP STATEMENT
The PROP statement is equivalent to using ATTR in PUP-based devices, where PROP allows users to
create local program properties initialized to one of the twelve (12) primitive BACnet data types supported
throughout the standard. User-defined properties must be declared before any other SPL statements with
the exception of compiler control statements such as #GPC. The syntax to define a property is:

PROP propertyname, datatype=xxx.

where
 propertyname is a numeric or two-letter reference for the property.
 datatype is a keyword for one of the twelve primitive BACnet datatypes such as REAL, UNSIGNED,

NULL, BOOLEAN, etc. Note that BACnet does not support PUP datatypes (e.g. 0FEh, 254, etc).
 =XXX is an initial value assignment (this can be placed in optionally).

In addition to being available as arguments for assignment and expression statements, all declared
properties are visible to the BACnet network in the form of non-standard properties of the Program Object
associated with the program. If you wish to access these properties using a BACnet device manufactured
outside of American Auto-Matrix, please make certain that the device supports the ability to address non-
standard objects and properties.

3.2.2 PROP STATEMENT EXAMPLES
The following provides examples of how to use the PROP statement, with information on how to initialize
values for each specific datatype assignment.

3.2.2.1 FLOATING POINT DATATYPE CREATION
For floating point datatypes, use REAL. REAL is a 32-bi IEEE floating point value, typically used for
present-value in Analog Input, Analog Output, and Analog Value objects, as well as setpoints, and any
other type of point that is of a floating nature (contains a decimal).

PROP 10001, REAL = 65.0

3.2.2.2 UNSIGNED INTEGER DATATYPE CREATION
 For unsigned Integer datatype, use UNSIGNED.

PROP 10002, UNSIGNED = 11

3.2.2.3 SIGNED INTEGER DATATYPE CREATION
 For signed Integers, use INTEGER.

PROP 10003, SIGNED = 6

SECTION 3: USING SPL WITH BACNET FUNDAMENTALS OF SPL IN BACNET

SPL User Manual (3/16/2007) 3-5

3.2.2.4 TEXT PROPERTY DATATYPE CREATION
 For text properties (character strings), use the term CHARSTRING.

PROP 10004,CHARSTRING = 0,64,"THIS IS MY TEXT PROPERTY"

In the value declaration, the value of zero (0) defines the character string set used for the text property.
This value must always be zero (0). The value of 64 limits the size of the text property value to 64
characters. All text properties must have a value defined in order for the program to compile. Text
properties are primarily to be used for read-only applications, and cannot be assigned different values from
within your SPL program.

3.2.2.5 BITSTRING PROPERTY DATATYPE CREATION
For bitstring properties, use the term BITSTRING.

PROP 10005,BITSTRING = 5,0b10101

In the value declaration, the value of five (5) defines the number of bits for the initialized value. If you
attempt to define more bits than the size setting, your program will not compile. All bitstring properties
must have a value defined in order for the program to compile. The GPC will support up to a maximum of
32 bits in a bitstring value for any property.

When a custom bitstring is viewed by a client or other front-end, all 32-bits will be returned.
3.2.2.6 TIME PROPERTY DATATYPE CREATION
For time properties, use the term TIME.

PROP 10006,TIME = 15:30:00.00
PROP 10007,TIME = 16:00

Time properties can be declared values in Hour:Minute format, or Hour:Minute:Second.Millisecond format.
Most applications used in American Auto-Matrix Native Series products use Hour:Minute format.

3.2.2.7 DATE PROPERTY DATATYPE CREATION
For date properties, use the term DATE.

PROP 10008, DATE = 0d20051225

Date property values are initialized uniquely in BACnet, when compared to PUP applications. The general
format is 0dyyyymmdd, where yyyy is the year, mm in the month, and dd is the day-of-the-month. The
example provided above represents December 25, 2005.

3.2.2.8 ENUMERATED PROPERTY DATATYYPE CREATION
For enumeration properties, use the term ENUM.

PROP 10009, ENUM = 2

Enumerated property values are typically used for multiple choice assignments in standard BACnet
properties such as the Units property, or present-value of Multi-State object type.

3.2.2.9 NULL PROPERTY DATATYPE CREATION
For NULL properties, use the term NULL.

PROP 10010, NULL

A NULL Datatype is typically used in SPL to assist with relinquishing control of an Analog Output or Binary
Output that was written to at a certain priority. No initial value can be given to a NULL property because
the datatype reflects no assigned value.

WORKING WITH OBJECT PROPERTIES SECTION 3: USING SPL WITH BACNET

3-6 SPL User Manual (3/16/2007)

3.3 WORKING WITH OBJECT PROPERTIES
Accessing objects and properties in BACnet using SPL can be done in a variety of methods. The following
section reviews the various methods of how to access objects and properties.

3.3.1 REFERENCING OBJECTS
SPL can access objects specifically by pre-defined object references. Appendix E2 provides a table of
supported BACnet Objects, and their predefined SPL object references.

3.3.2 REFERENCING PROPERTIES
SPL can address standard properties by using pre-defined property references. Appendix E3 provides a
table of the standard BACnet properties, and their pre-defined SPL property references. For non-standard
properties in GPC family devices, you may use either the two-letter reference for the property (e.g. SP, AE,
etc), or the numeric BACnet property identifier.

3.3.3 ADDRESSING OBJECT PROPERTIES
When addressing object properties in SPL, the following format must be used:
 [objectID.property]
where
 objectID references the pre-defined object reference and its Object Instance number
 property references the pre-defined property reference or numeric BACnet property identifier.

A period (.) must separate the objectID and property references.

The following examples are illustrated:
[AI1.PRESENT_VALUE]
;references Analog Input with Instance of 1
[BI2.PRESENT_VALUE]
;references Binary Input with Instance of 2
[DE800818.SYSTEM_STATUS]
;references Device object with device instance of 800818

In many applications, you will typically deal with an object’s PRESENT_VALUE property, as this is the
most commonly accessed property in BACnet devices.

However, when you are working with proprietary properties (sometimes referred to as non-standard), SPL
requires you to reference the BACnet identifier number for the proprietary property of the object you are
referencing. In AAM controllers, property identifiers for proprietary properties can be found in the
controller’s respective user manual. When you are addressing proprietary properties for a GPC controller
(whether local or remote over an MS/TP network connection), you may simply use the two-letter alias that
is assigned to it. However, if you are working with an ASC-family device or a third-party BACnet controller
that contains proprietary properties, you will need to use the BACnet identifier number.

If you choose to work with the numeric BACnet property identifier or are addressing proprietary properties,
the following can be used:

[AI1.47410]
[BI2.85]
[DE800818.16520]

SECTION 3: USING SPL WITH BACNET WORKING WITH OBJECT PROPERTIES

SPL User Manual (3/16/2007) 3-7

3.3.4 ADDRESSING USER-DEFINED PROPERTIES
To reference user-defined properties created at the top of your program, the following format must be
used:
 [.property]
where
 .property is the property identifier declared.

By referencing no object, SPL will look inside its own program for the property reference.
#GPC
;
PROP 10001,REAL
PROP 10002,REAL
;
L0: [.10001] =13.00

[.10002] = 16.25

3.3.5 PEER-TO-PEER ADDRESSING
SPL allows users to perform peer-to-peer transactions on the MSTP sub-network that the controller
resides on. To address an object property from a remove device, the following format must be used:
 [####.objectID.property]
where
 #### is the Device Instance of the Device you wish to access.
 ObjectID is the Object Type and Instance.
 property is the property of the object.

The following example illustrates this function:
#GPC
;
L0: A = [12345.AI1.PRESENT_VALUE]

When accessing object properties from remote devices, users should place SWAIT statements of about 3
seconds between each peer-to-peer network transaction that is made. This allows for the device to
receive the token from the network. If you declare ERRORWAIT, SPL will trap an MSTP communication
timeout if encountered.

Please note that NB-GPC family devices can only access other MSTP devices located on the local sub-
network it is connected to.

If you wish to access non-standard properties in ASC family devices remotely, you must always use the
numeric BACnet property identifier. Numeric BACnet property identifiers for each property can be found in
the back of the corresponding device you are using, or through various utilities in NB-Pro.

WORKING WITH OBJECT PROPERTIES SECTION 3: USING SPL WITH BACNET

3-8 SPL User Manual (3/16/2007)

3.3.6 WRITING VALUES TO OBJECT PROPERTIES
Writing values to object properties is dependent on the datatype of the property you are working with. By
general nature, BACnet SPL can write to numeric based data types by simply placing an equal sign after
the object property and declaring your value. Datatypes that are acceptable to the right-side of the equal
sign are as follows:
 REAL
 UNSIGNED
 INTEGER
 TIME
 DATE
 BOOLEAN
 ENUM
 DOUBLE

The following example provides this action:
[AI1.PRESENT_VALUE]=75.2
[AV2314.PRESENT_VALUE]=64.0

Similar to PUP applications, you can utilize traditional variable assignment routines. Keep in mind that
some datatypes need to be equated to a user-defined property configured for the same datatype if one
wishes to modify its value through SPL. The primary datatype that must follow this format is BITSTRING.

The following example illustrates how to write to BITSTRING datatypes:
#GPC
;
PROP 10001,BITSTRING=8,0b10101010
;
L0: [GPCSCHED1.AD] = [.10001]

SECTION 3: USING SPL WITH BACNET WORKING WITH OBJECT PROPERTIES

SPL User Manual (3/16/2007) 3-9

3.3.6.1 WRITING WITH COMMAND PRIORITIZATION
In BACnet, it is possible for many different devices to try to modify the same device’s object property
values. If multiple devices tried to write to the same object property, errors could occur and values could
be set incorrectly. To avoid this, BACnet uses priority arrays to determine the order in which property
changes will be performed.

A priority array assigns the unique levels of priority to the different types of devices that could write to a
device. There are 16 prioritization levels with 1 being highest, and 16 being lowest. A complete list of
BACnet Priority Array Levels and their uses is given below:

Valid Objects that need to be commanded with Priority Array are as follows:
 Analog Output
 Analog Value (if commandable)
 Binary Output
 Binary Value (if commandable)

To write to one of the above objects using Priority Array, you must place an at sign (@) followed by the
level of priority you wish to write with inside the object property reference. The following example
illustrates:

#GPC
;
L0: [AO1.PRESENT_VALUE@2]=100.0

[BO1.PRESENT_VALUE@2]= 1

To relinquish control, you must equate the object property at the same priority to a user-defined property
with a NULL datatype. The following example illustrates:

#GPC
PROP 10013,NULL
L0: [AO1.PRESENT_VALUE@2]=[.10013]

[BO1.PRESENT_VALUE@2]=[.10013]

Table 3-1: Priority Array Levels

Priority
Level Application Priority

Level Application

1 Manual-Life Safety 9 Available

2 Automatic-Life Safety 10 Available

3 Available 11 Available

4 Available 12 Available

5 Critical Equipment
Control 13 Available

6 Minimum On/Off 14 Available

7 Available 15 Available

8 Manual Operator 16 Available

WORKING WITH OBJECT PROPERTIES SECTION 3: USING SPL WITH BACNET

3-10 SPL User Manual (3/16/2007)

3.3.7 DATA TYPE SENSITIVITY WITH BACNET SPL
In comparison to PUP applications, datatypes in BACnet are mostly 32-bit, which results in sensitivity
when writing data through SPL. In SPL, the following items are the most common error when writing
BACnet SPL.
 When writing to floating point values, you must include a decimal place. If you do not include a deci-

mal place, your SPL program could abort.
 When performing math functions in SPL, you must use the same datatypes. For example, if you try to

add an unsigned value of 15 to a time of 15:00 to get 15:15, this will not work. You must add two times
together in order to come to a realistic result. Operating outside of this rule will result in aborted SPL
programs

 Follow the rules listed with each datatype listed within this manual. For example, you can only write to
bitstring properties by equating a property to a user-defined property.

3.3.8 EQU FUNCTION LIMITATIONS IN BACNET SPL
When using the EQU function with BACnet-based SPL programs, you may use the function to reference
commonly accessed objects within your program. Unlike PUP-based SPL, you cannot use EQU functions
to write to commandable objects such as Analog Outputs and Binary Outputs in GPC. While the EQU
statement can accommodate addressing commandable object types, this functionality is limited to being
used for read commands, rather than write commands.

SECTION 3: USING SPL WITH BACNET ADVANCED BACNET SPL FUNCTIONS

SPL User Manual (3/16/2007) 3-11

3.4 ADVANCED BACNET SPL FUNCTIONS

3.4.1 THE OID FUNCTION

OID(objecttype,instexpr)

where:
objecttype is a numeric object identifier number or SPL object reference
instexpr is an expression for instance

The OID function is used to compute object identifier numbers from within an SPL program. In many
instances the desired object type will be known, but the object instance will be determined during the
program’s execution. This would occur, for example, if you knew you wanted to read from an analog input,
but you wanted the particular input chosen when the program is run.

The OID function will return the object identifier number for the object specified by the object type and
instance number entered into the objecttype and instexpr arguments. The objecttype argument can either
be the numeric object identifier number for that type of object or the SPL keyword used to refer to that type.
The instexpr argument can be any expression which results in a positive integer value. A complete list of
both the standard BACnet object types as well as the AAM proprietary object types, their object identifier
numbers for each, and the SPL Object References for each are given in Appendix E.

As an example, to compute the object identifier number for the third instance of the analog output object
you could use the numeric value for the object identifier number and write

OID(1,3)

or you can use the SPL keyword AO to specify the analog output

OID(AO,3)

Similarly, you could use a program register to decide which object to use. If you wanted to look up the
object identifier number for the analog output whose instance number was stored in the B register for the
program you could write

OID(AO,B)

The OID function can be combined with the BACNET statement to programmatically read properties from,
or write properties to, any controller on the MSTP sub-network.

3.4.2 THE BACNET STATEMENT
The BACNET statement is used to reference a property on the BACnet network. Your programs can read
values from, or write values to, the referenced property using the BACNET statement. The syntax for the
BACNET statement is as follows:

BACNET(devexpr,objexpr,propexpr,instexpr)

where
devexpr is an expression whose value specifies the device object instance of the device

containing the property to be read or written.

ADVANCED BACNET SPL FUNCTIONS SECTION 3: USING SPL WITH BACNET

3-12 SPL User Manual (3/16/2007)

objexpr is an expression specifying the object identifier number of the object whose property is to
be read.

propexpr is an expression for the identifier number for the chosen property.
instexpr specifies an array index for use in cases when array properties are being read.

When working with the BACNET statement the special value -1 (0xFFFFFFFF) can be used for devexpr
and instexpr. When used in devexpr, the value -1 means "this device" and is used to refer to properties
present in the device in which the SPL program is running. When used in instexpr, a value of -1 indicates
that no array index is provided. A value of -1 should be entered for instexpr whenever you are referencing
a single value. The instexpr term is only used for bit string, character string, and octet string properties.

3.4.2.1 READING VALUES WITH THE BACNET STATEMENT
The BACNET statement can be used to read values from any device connected to the MSTP sub-
network. To read a value, you must specify the device, object identifier number, property identifier number,
and index of the property to be read. Each of these values may be functions or expressions, allowing you
to determine the property to be read at the time of executions.

For example, if you wanted to read the value of the property who’s identifier number was 85 from an object
located on the same controller who’s identifier number was 127.

BACNET(-1,127,85,-1)

Here the devexpr is -1 because the object is on the same device, objexpr is the object identifier number
127, 85 is the identifier number of the property we wish to read, and the value of -1 is included because the
property is not an array and, therefore, has no index value.

The combination of the OID and BACNET statements is particularly useful. The OID function can be used
as the objexpr argument to the BACNET statement, allowing you to specify any property without having to
know identifier numbers ahead of time. If you wished to read the present_value of Analog Output 1 then
you would write:

D=OID(AO,1)
BACNET(-1,D,85,-1)

Here we have used the OID function as an argument in the BACNET statement. You can also use
expressions in the OID function. If, in the example above, instead of Analog Output 1, you were interested
in reading the value of the Analog Output who’s instance number was stored in A, you would write:

D=OID(AO,A)
BACNET(-1,D,85,-1)

Expressions can also be used in the devexpr and instexpr arguments. If you had, for example, 10 NB-VAV
controllers with device numbers 10 through 19, you could average the measured flow (Flow
Control:present_value) using the following code.

A=0
B=10
C=OID(AI,6)

L1: A=A+BACNET(9+B,C,85,-1)
LOOP B,L1
A=A/10

SECTION 3: USING SPL WITH BACNET ADVANCED BACNET SPL FUNCTIONS

SPL User Manual (3/16/2007) 3-13

In this program, the value of B is used to increment the device from which the flow is being read and A is
the average flow.

Similarly, you could use expressions in arguments to the BACNET statement to choose the property being
read. If you had, for example, twelve SSB-FI1 devices connected to your NB-GPC1 measuring space
temperatures, you could read the current values and calculate an average space temperature using a
program similar to the one above or you could simply use the values in the Universal Input Summary
Objects. In this case, the current values would be in the (VD) Current Measured Input 13 through (VO)
Current Measured Input 24 properties. The code to do this would look like this:

A=0
B=12

L1: A=A+BACNET(-1,UISUMMARY0,VC+B,-1)
LOOP B,L1
A=A/12

Here we are using B to increment the property identifier number. The value VC+B is used because we are
interested in the values of properties VD (identifier number 54852) through VO (identifier number 54863).
VC has a value of 54851 and we know that B will vary from 12 to 1 as the program executes the LOOP
statement. The loop will therefore count from 54863, the identifier number for VO, down to 54852, the
identifier number for VD.

3.4.2.2 WRITING VALUES WITH THE BACNET STATEMENT
The syntax used for writing values using the BACNET statement is very similar to that used for reading
with one additional parameter. When writing values, you must include a priority array level for the write.
This value is appended after the instexpr argument in the BACNET statement. The complete syntax
would look like

BACNET(devexpr,objexpr,propexpr,instexpr,priority)

where
devexpr is an expression whose value specifies the device object instance of the device

containing the property to be written.
objexpr is an expression specifying the object identifier number of the object whose property is to

be written.
propexpr is an expression for the identifier number for the chosen property.
instexpr specifies an array index for use in cases when array properties are being written.
priority is an expression for the priority array level for the write command

When writing values using the BACNET statement, you may use expressions for any of the arguments in
the same way that you could when reading values. For example, if you wanted to turn on all of the digital
outputs on an NB-GPC1 you would write the following:

B=12
L1: C=OID(BO,B)

BACNET(-1,C,85,-1,7)=1
LOOP B,L1

 In this example, the present_value property for each of the twelve Digital Output objects is set to one.
This value is written with a priority of 7.

ADVANCED BACNET SPL FUNCTIONS SECTION 3: USING SPL WITH BACNET

3-14 SPL User Manual (3/16/2007)

 SPL User Manual (3/16/2007) A-1

IN THIS SECTION

APPENDIX A: SPL LANGUAGE REFERENCE

This section indicates which program statements are valid for each of the possible target platforms for an
SPL Program. It also contains an alphabetical listing of all program statements, the arguments they
require and examples of their use.

Introduction ... A-3
ACTIVATE ... A-5
ALARM.. A-5
ATTR... A-5
BACNET ... A-6
CALL ... A-6
DATA ... A-7
DEACTIVATE .. A-7
DREF .. A-7
ERRORABORT... A-8
ERRORWAIT .. A-8
GOSUB ... A-8
GOTO.. A-9
IF... THEN... {ELSE...} ... A-9
JOB ... A-9
 REPORT Job ... A-9
 SPOOL Job.. A-10
 BROADCAST (BC) Job................................ A-10
 DATA CAPTURE/DATA STUFF Job A-10
 UPLOAD/DOWNLOAD Job A-11
 EXPORT Job.. A-11

LOG... A-12
LOOP .. A-12
MWAIT .. A-12
NOP .. A-13
OID.. A-13
ON... GOTO... ... A-13
ONERROR.. A-14
PRINT ... A-14
PROP .. A-14
RESTART.. A-15
RETURN ... A-15
SAVE... A-15
SECTION .. A-16
SPOOL.. A-16
STARTTREND .. A-16
STOP .. A-17
STOPTREND .. A-17
SWAIT... A-17
TABLE ... A-18
UNLOAD ... A-18
WAIT ... A-18

APPENDIX A: SPL LANGUAGE REFERENCE

A-2 SPL User Manual (3/16/2007)

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-3

A.1 INTRODUCTION
SPL has many statements that can be used to create control programs. However, not all of
these statements are applicable to all controller platforms. Table A-1 shows which options are
valid for the various target platforms for your SPL program.

Table A-1 Target Platform Dependence of Program Statements
Statement SAGE DX GX GPC

ACTIVATE programname

ALARM classexpr,"formatstring",x,x,x...x,x,x 1

ATTR programattr,datatype 1

ATTR channel;attr,datatype=initialvalue,autosave

BACNET(devexpr,objexpr,propexpr,instexpr,priority) 2

CALL PLBname

CALL PLBname,STICK

DATA v1,v2,v3,v4....

DEACTIVATE programname

DREF unit,channel;attr 1

ERRORABORT

ERRORWAIT

GOSUB label

GOTO label

IF expr THEN label

IF expr THEN label ELSE label

JOB classexpr,"jobstring",x,x,x...x,x,x

LOG logfilename,"formatstring",x,x,x...x,x,x

LOOP register,label

MWAIT expr

NOP

OID objecttype,instexpr 2

ON expr GOTO label0,label1,label2,label3

ONERROR label

PRINT portexpr,classexpr,"formatstring",x,x,x...x,x,x

PROP propid,datatype=initialvalue,RO 2

REF (index)

RESTART programname

APPENDIX A: SPL LANGUAGE REFERENCE

A-4 SPL User Manual (3/16/2007)

 1 SBC-GPC only
 2 NB-GPC only

RETURN

SAVE aa,bb,cc,dd...pp

SECTION number

SPOOL portexpr,pathname

SPOOL portexpr,pathname,DELETE

STARTTREND trendname

STOP

STOP programname

STOPTREND trendname

SWAIT expr

TABLE name (size, type)=value 1

UNLOAD

WAIT expr

Table A-1 Target Platform Dependence of Program Statements
Statement SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-5

A.2 ACTIVATE

ACTIVATE programname

where:
programname is the name of the program to be activated

The ACTIVATE statement is used to load an inactive program into memory (if necessary), and begin
executing its logic. This statement will not restart a program that is already running, but will restart a
program that has been aborted. If a program has been stopped, ACTIVATE will start the program at that
point.

A.3 ALARM

 * SBC-GPC only

ALARM classexpr,"formatstring",x,x,x...x,x,x

where:
classexpr is represents the alarm class code (0-255) to be applied to the text message
formatstring is a base text string with format specifiers that determine the representation of

the corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expression to be formatted by formatstring

The ALARM statement is used to create an alarm of class classexpr using the format specified by
formatstring.

A.4 ATTR

 * SBC-GPC only

ATTR {channel};attr,datatype{=initialvalue}{,autosave}

where:
channel is the channel number (optional)
attr is the attribute

SAGE DX GX GPC

SAGE DX GX GPC
*

SAGE DX GX GPC
*

APPENDIX A: SPL LANGUAGE REFERENCE

A-6 SPL User Manual (3/16/2007)

datatype is the data type
initialvalue is the initial value (optional)
autosave is the autosave flag

Local program attribute names and their data types are declared using the ATTR command. Although
local program attributes can be declared anyplace within in the SPL text, they must be declared before
they are referenced. It is strongly recommended that all local attributes are declared before any other SPL
statements. Local program attributes that are referenced, but not declared, result in compile-time errors.

When an attribute is declared, it may be set as an autosave attribute by including an autosave flag value of
1. If the autosave flag not present or set to zero, the attribute will not autosave.

A.5 BACNET

 * NB-GPC only

BACNET(devexpr,objexpr,propexpr,instexpr{,priority})

where:

devexpr is an expression whose value specifies the device object instance of the device
containing the property to be read or written.

objexpr is an expression specifying the object identifier number of the object whose property is to
be read or written.

propexpr is an expression for the identifier number for the chosen property.
instexpr specifies an array index for use in cases when array properties are being read.
priority is an expression for the priority array level for the write command (used for writing).

The BACNET statement is used to reference a property on the BACnet network. Using the BACNET
statement, you can read from or write to a BACnet property from any controller on the network. The
device, object, property and instance numbers may all be determined programmatically.

A.6 CALL

CALL PLBname{,STICK}

where:
PLBname is the name of the PLB being called
STICK is included to prevent the PLB from being unloaded

SAGE DX GX GPC
*

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-7

The CALL statement is used to execute a PLB from within another PLB. The CALLed PLB may be a
block of logic that is shared among several PLBs and/or may be so infrequently used that it is not required
that it be RAM-resident all the time.

If the optional STICK argument is used in the CALL, then the in-use count is set to FFFFh, preventing the
PLB from being unloaded later.

A.7 DATA

DATA v1,v2,v3,v4...

where:
v1,v2,v3,v4... are the table values

The DATA statement is used to initialize the individual elements of a ram-based table. The DATA
statement(s) must immediately follow the table declaration. To initialize the entire table to a single value
see Section A.34: TABLE.

A.8 DEACTIVATE

DEACTIVATE programname

where:
programname is the name of the program to be deactivated

The DEACTIVATE statement allows you to remove a program from memory (RAM). This may free
memory space for other programs.

A.9 DREF

 * SBC-GPC only

DREF {unit,}channel;attr

where:

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC
*

APPENDIX A: SPL LANGUAGE REFERENCE

A-8 SPL User Manual (3/16/2007)

unit is the unit number (optional)
channel is the channel number (format 0FFFFH where FFFF is the channel)
AA is the attribute

The DREF (Define REFerence) statement is used to cause entries to be made into the attribute table at
the end of the PLB, taking the place of the PRB. The attribute/reference table can contain up to 255
entries, i.e., there can be a total of 255 combined program attributes and references per PLB.

A.10 ERRORABORT

ERRORABORT

The ERRORABORT statement is an error control statement that causes the program executor to abort the
program when any trappable or non-trappable error is detected.

A.11 ERRORWAIT

ERRORWAIT

The ERRORWAIT statement tells the program executor that when it detects a trappable error, then the
statement that caused the trappable error is to be re-executed forever until the error condition no longer
exists.

A.12 GOSUB

GOSUB label

where:
label is the text label which specifies the starting point of the subroutine

The GOSUB statement is used to call a subroutine in the current PLB. A RETURN statement is used to
terminate the internal subroutine and return execution control to the statement directly following the
GOSUB statement.

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-9

A.13 GOTO

GOTO label

where:
label is the label of the point to which program execution will be switched

The GOTO statement is an unconditional branch statement that causes program logic to jump a location
that is identified by a label.

A.14 IF... THEN... {ELSE...}

IF expr THEN label1 {ELSE label2}

where:
expr is the logical expression which determines conditional branching behavior
label1 is the label to jump to if expr evaluates to true
label2 is the label to jump to if expr evaluates to false (optional)

The IF...THEN... statement is a conditional statement which causes program execution to jump to a
different part of a program based on the evaluation of a a logical expression to a value of true. Using the
optional ELSE... statement, an additional option corresponding to expr evaluating to false may be defined.

A.15 JOB

A.15.1 REPORT JOB

JOB 0,"RPT templatename, valuepathname, reportpathname",x,x,x...x,x,x

where
templatename- name of the ASCII text template file
valuepathname- data file that contains values in CSV, TBL or TRN format

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

A-10 SPL User Manual (3/16/2007)

reportpathname- the ASCII text output report file
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The REPORT job is used to merge a text template file with a file containing data values to produce a final
report file. This report file may be printed or saved for later reference.

A.15.2 SPOOL JOB

JOB 0,"SPOOL port pathname{/D}{/B}{/Sbaud}{/Ntelephonenumber}",x,x,x...x,x,x

where
port- specifies the SAGE port number (0-31) that provides a spool service
pathname- valid DOS pathname of the file to be spooled
/D- optional switch used to delete pathname after printing
/B- optional switch used to add banner line information to printed listing
/Sbaud- optional switch used to specify baud rate for dialout (300, 600, 1200, 2400,4800, 9600,

 19200, 38400). If not used, the default is 2400.
/Ntelephonenumber-optional dialout phone number used to specify destination for dialout port.

Valid telephone number characters include 0-9, # and *.
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The SPOOL format of the JOB statement is used to issue an “as soon as possible” request to the
SAGEMAX scheduler to print out (spool) a particular file.

A.15.3 BROADCAST (BC) JOB

JOB 0,"BC port/unit/messagetext",x,x,x...x,x,x

where
port-SAGE port number of broadcast destination
unit-device unit number of broadcast destination or SAGE peername
messagetext-message text to be broadcast
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The BROADCAST job (BC) is used to issue an “as soon as possible” broadcast of message text to the
SAGEMAX scheduler to a specified SAGEMAX unit number on a specified SAGEMAX port.

A.15.4 DATA CAPTURE/DATA STUFF JOB

JOB 0,"DCS pathname {/S}{/D}",x,x,x...x,x,x

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-11

where
pathname-an ASCII text file with a valid DOS name and extension .PDF which is a

 points description file.
/S-optional switch to specify captured data in Stuff file format (default is Comma Separated

 Variable or CSV format if blank)
/D-optional switch which turns on debug tracing
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The data capture/data stuff job (DCS) is used to create an “as soon as possible” request to the SAGE
scheduler gather real-time values (capture) from a list of named object attributes, and/or modify values
(stuff) from a list of named object attribute/value pairs.

A.15.5 UPLOAD/DOWNLOAD JOB

JOB 0,"UDL t port peername delimiter remotepath localpath",x,x,x...x,x,x

where
t-type of file service, where U is upload and D is download.
port-the SAGE port number to which the network device is connected.
peername-represents the SAGE Ethernet peername or peer unit number for the network device.
delimiter-:, / or \ character
remotepath-either a standard DOS pathname if the network device is a SAGE peer or

drive:file.ext for other peers.
localpath-the local DOS pathname of the file in drive:\path\file.ext format.
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The upload/download file (UDL) job is used to transfer files between a SAGEMAX and a network device
such as another SAGEMAX, a STAR peer or an XANP or PHP device.

A.15.6 EXPORT JOB

JOB 0,"EXPORT nbfpath {/switch ... /switch}",x,x,x...x,x,x

where
nbfpath-represents the full .NBF pathname which may include an extension, but will be ignored

 and .NBF will be added.
/switch-series of optional switches that represent the type of .BOB files to search for in the \CFG

directory. If no switches are listed, then all .BOB files are searched.
x,x,x...x,x,x,x are expressions whose values are inserted into the jobstring text in place of format

 specifiers when PEX submits the job to the SAGE job scheduler

The EXPORT job is used to export name bindings files (.NBF) by reading and translating SAGEMAX-

resident binary object files (.BOB).

APPENDIX A: SPL LANGUAGE REFERENCE

A-12 SPL User Manual (3/16/2007)

A.16 LOG

LOG logfilename,"formatstring",x,x,x...x,x,x

where:
logfilename is complete pathname of a text file to which the text output will be appended
formatstring contains a base text string with format specifiers that determine the representation of

the corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expressions to print

The LOG statement is used to send text output to a file.

A.17 LOOP

LOOP register,label

where:
register is the number of times the loop is to be executed
label is the program label to which execution will jump

The LOOP statement allows you to execute the same block of code multiple times. When a LOOP
statement is encountered, the value of register is decremented (register=register-1). If the value of
register is greater than zero, then execution will jump to the program label specified by label.

A.18 MWAIT

MWAIT expr

where:
expr is the number of minutes to delay program execution

The MWAIT statement is used to delay program execution for expr minutes.

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-13

A.19 NOP

NOP

The NOP statement is used for low-level debugging and is normally not be used in SPL programs. The
function of the NOP (or No OPeration) statement is to use up time and occupy program space.

A.20 OID

 * NB-GPC only

OID(objecttype,instexpr)

where:
objecttype is a numeric object identifier number or SPL object reference
instexpr is an expression for instance

The OID function is used to compute object identifier numbers from within an SPL program.

A.21 ON... GOTO...

ON expr GOTO label0,label1,label2,label3...

where:
expr is the expression which determines which label is selected
label0,label1,label2,label3... are the labels of the sections to which program control can

be switched

The ON... GOTO... statement is a conditional statement that identifies a series of indexed labels to which
program execution can be switched based on the value of the expression expr. The indices of the ON...
GOTO... statement are zero-based. In addition, if an index evaluates to a number that is greater than the
number of indices, program execution continues with the next line of the program.

SAGE DX GX GPC

SAGE DX GX GPC
*

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

A-14 SPL User Manual (3/16/2007)

A.22 ONERROR

ONERROR label

where:
label is the label of the code to be executed when a trappable error occurs

The ONERROR statement identifies the point in the SPL program to jump to if a trappable error is
detected in the line immediately preceding the ONERROR statement.
The ONERROR statement is in effect only for the statement that precedes it. When an error is detected,
the error code is placed in the program’s $E control attribute by PEX. ONERROR statements take
precedence over ERRORWAIT statements.

A.23 PRINT

PRINT portexpr,classexpr,"formatstring",x,x,x...x,x,x

where:
portexpr is the SAGEMAX port (0-31) to which data is to be sent
classexpr is the alarm class code (0-255) to be applied to the text message
formatstring contains a base text string with format specifiers that determine the representation of

the corresponding expression in the list of expressions
x,x,x...x,x,x,x is the list of expressions to print

The PRINT statement is used to send text output to a port on the controller.

A.24 PROP

 * NB-GPC only

PROP propid,datatype=initialvalue{,RO}

where:
propid is either a well-known property name, e.g. present_value, or a numeric

property identifier

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC
*

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-15

datatype is keyword, e.g. NULL, BOOLEAN, UNSIGNED, REAL etc. representing one of the
primitive application datatypes

initialvalue is value for the property to have when first loaded.
RO is used to declare a property read only (optional).

A.25 RESTART

RESTART programname

where:
programname is the name of the program to be restarted

The RESTART statement is a program control command that is used to restart program execution from the
beginning, as if it had just been loaded. RESTART can also activate a deactivated program and start it
from the beginning. If a program is unloaded, RESTART causes it to be loaded then restarted.

A.26 RETURN

RETURN

The RETURN statement is used at the end of a subroutine to return program execution to the point
immediately following the call to the subroutine.

A.27 SAVE

SAVE {programattr1,programattr2,...programattr16}

where:
programattr1,programattr2,...programattr16 are the program attributes (up to 16) which are

 to be saved

The SAVE statement is used to write the values of local program attributes to an initial value (INI) file. The

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

A-16 SPL User Manual (3/16/2007)

aa,bb,cc,dd...pp arguments are used to specify which properties (up to 16) will be written to the INI file. If
the list of properties is not included, the SAVE statement will cause the current value of all program
attributes to be written to the INI file.

A.28 SECTION

SECTION number

where:
number is the number designation given to the section

The SECTION statement is used to assign a number to a given portion of an SPL program. This is a
debugging statement that stores the number argument in the $S program control attribute of the program.
This command can be placed strategically at multiple locations in the program to be debugged.

A.29 SPOOL

SPOOL portexpr,pathname,{DELETE}

where:
portexpr specifies the port number where the file is to be SPOOLed
pathename is specifies the path and filename of the file to be SPOOLed
DELETE specifies whether to delete the file after spooling (optional)

The mechanism for spooling report and log files created by the report and log JOB commands is via the
SPOOL command. The SPOOL command causes the specified port to begin printing the file as soon as it
can. The SPOOL statement is used to send log files that were created by LOG statements to a specified
port. If the DELETE argument follows the filename, then the file will be deleted upon completion of the
spool.

A.30 STARTTREND

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-17

STARTTREND trendname

where:
trendname is the name of a trend file fragment that can be up to 17 characters long

The STARTTREND statement is used to start data collection for the specified trend. The trend must be
created prior to the execution of the STARTTREND statement.

A.31 STOP

STOP {programname}

where:
programname is the name of the program you wish to stop (optional)

The STOP statement is used to halt program execution, maintaining it in a suspended state. If a program
name is not included with the STOP statement, the current program is halted. Otherwise, the specified
program is halted. To resume program execution from a halted state, you must use the RESTART or
ACTIVATE statements.

A.32 STOPTREND

STOPTREND trendname

where:
trendname is the name of a trend file fragment that can be up to 17 characters long

The STOPTREND statement is used to stop data collection for the specified trend. The trend must be
created prior to the execution of the STOPTREND statement.

A.33 SWAIT

SAGE DX GX GPC

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

A-18 SPL User Manual (3/16/2007)

SWAIT expr

where:
expr is the number of seconds to delay program execution

The SWAIT statement is used to delay program execution for expr seconds.

A.34 TABLE

 * SBC-GPC only

TABLE name (size, datatype){=value}

where:
name is the name of the table
size is the number of entries contained in the table
type is the datatype
value is the value to which all cells in the table will be initialized

The TABLE statement is used to generate a linear, one-dimensional array of data values. When the table
is created using the TABLE statement, you may optionally initialize all entries in the table using the
optional value term.

A.35 UNLOAD

UNLOAD

The UNLOAD statement is used to remove this program from memory (RAM). This frees memory space
for other programs. If the program's PLB is sticky, it is not unloaded, but the program is put in the unload
state.

A.36 WAIT

SAGE DX GX GPC
*

SAGE DX GX GPC

SAGE DX GX GPC

APPENDIX A: SPL LANGUAGE REFERENCE

SPL User Manual (3/16/2007) A-19

WAIT expr

where:
expr is the logical expression that will determine when the WAIT will finish

The WAIT statement is a conditional statement that halts further program execution until the expression
specified in the argument is true.

APPENDIX A: SPL LANGUAGE REFERENCE

A-20 SPL User Manual (3/16/2007)

 SPL User Manual (3/16/2007) B-1

Code Trappable Meaning Description

1 Invalid Request An unsupported math function was requested by the program.

2 Argument Error An argument is bad

3 Invalid Response Bad return for an inquiry

4 CRC Error CRC Error from network connection

5 Timeout Too much time (i.e., more than 20 ms) was taken to execute the
“once-per-second” routine.

6 Unknown Datatype Datatype is unknown to program executor

7 NAK Response The program tried to write a value to a read-only attribute.

8 Invalid Channel # A read/write request was made to an unknown or non-existent
channel.

9 No Such Attribute A read/write request was made to an unknown or non-existent
attribute.

10 Record Deleted attempt to read a deleted record

11 No Such Name name was not found in search

12 Temp Flush Failed wild serach file flush failed

13 Temp Create Failed wild search file could not be created

14 Lseek Cache Failed wild search files seek failed

15 Read Cache Failed wild search file read failed

16 Object File Seek
Failed database file rewind failed

17 Object File Open
Failed database file open failed

18 Object File Read
Failed database file read failed

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)
This section includes a list of the SPL error codes that can be generated for a program with #SAGE,
#SOLODX, or #SOLOGX target platforms. Each error listed includes a description of the error a well as
whether or not the error is trappable by the compiler’s error handling routines. Some errors are listed
with a description, while other errors are self descriptive and do not require a description.

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)

B-2 SPL User Manual (3/16/2007)

19 Record Locked could not delete record

20 No Such Record bad record number

21 No Such Object Type bad database type

22 No Free Locks could not lock record

23 Object File Write
Failed could not write record

24 Temporarily Blocked communication port cannot accept communications

25 Invalid Object Name object name in source code does not exist in database

26 Invalid Task invalid task parameter specified

27 Invalid Timer invalid timer handle specified

28 No More Timers no more timers available

29 Object Type Not
Initialized object type is being initialized

30 Unknown Peer Name Peer Name is not known in database or device

31 Invalid Driver Invalid driver type (driver may not be loaded)

32 No Such Class class does not exist in database or device

33 DOS Temp Create
Failed temporary file could not be created

34 Invalid Port invalid port number specified

35 Invalid Unit invalid unit ID specified

36 Invalid Session invalid virtual terminal session

37 Invalid Service protocol service unknown

38 Already
Acknowledged transaction already acknowledged

39 No Such Card card does not exist on AI2000 based device

40 Bad Ftype For Card ftype invalid for card that exists on AI2100 device

41 Bad Datum Size data size was rejected

42 Conversion Error data conversion error‘

43 Data Rejected data was rejected

Code Trappable Meaning Description

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)

SPL User Manual (3/16/2007) B-3

44 Bad User or
Codeword username or password was valid

45 No Free Sessions No free VT or file sessions

46 Privilege Violation attempted to perform a privileged operation

47 VT Already Open vritual terminal session already open

48 Port Busy port is busy carrying out another transaction

49 Bad Drive invalid drive number

50 End of File File end was reached

51 No Such File file name does not exist

52 Bad File Handle invalid file handle number

53 Bad File Name invalid file name format

54 Bad Record Number invalid record number

55 File Handle Not Open a specified file handle is not open

56 File In Use file is currently being written to or used

57 File Handle in Use File number is alraedy assigned

58 Transient File Too Big Job or OBL file was greater than 64k limit

59 Alarm Queue Failure The alarm queue is full (i.e., it has more than 3 alarms and has not
been polled).

60 No Match Found Match not found to search

61 No Such Name Name does not exist in database

62 Conversion Error
An invalid data type conversion was attempted. For example, trying
to assign a negative value to an attribute that has been defined as a
BCD time data type would cause a conversion error.

63 Underflow Error The result of a subtraction function resulted in a value that could not
be represented in 32 bits.

64 Overflow Error The result of an addition function resulted in a value that could not be
represented in 32 bits.

65 Not a Number The square root (SQRT function) of a negative number was
attempted.

66 Invalid Format The result of a report generation using a non-ASCII data file.

67 Invalid Data Type The result of RETYPEing an attribute using an invalid or nonexistent
data type code.

Code Trappable Meaning Description

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)

B-4 SPL User Manual (3/16/2007)

68 No Compare error is self-explanatory

69 Bad Sample Interval error is self-explanatory

70 Invalid Trend
Signature error is self-explanatory

71 Sample Limit
Exceeded error is self-explanatory

72 Trend Already
Enabled error is self-explanatory

73 Trend Not Fould error is self-explanatory

74 Invalid Trend Format error is self-explanatory

75 No Available ITM
Packets no Sage resources available to carry out task

76 Sample Failure Alarm error is self-explanatory

77 Not Collected error is self-explanatory

78 Name Unknown to
Peer error is self-explanatory

79 Check Byte Error error is self-explanatory

80 Invalid Program
Register a request was made to a program register that does not exist

81 Program Unloaded program is unloaded

82 Stack Error too many nested expressions in Sage/DX/GX program

83 Invalid Pcode incorrect target platform definition (e.g. #SOLOGX) was used

84 Invalid Term term is not supported on platform

85 Invalid Operator error is self-explanatory

86 Invalid State error is self-explanatory

87 Term Error error is self-explanatory

88 Expression Error error is self-explanatory

89 Unsuccessful Unload error is self-explanatory

90 Invalid State Change error is self-explanatory

91 Program Not Found error is self-explanatory

92 Index Too Large error is self-explanatory

Code Trappable Meaning Description

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)

SPL User Manual (3/16/2007) B-5

93-95 reserved error is self-explanatory

96 Password Invalid error is self-explanatory

97 Not an AVL File error is self-explanatory

98 Invalid Message
Number error is self-explanatory

99 Invalid Language error is self-explanatory

100 Dial Busy error is self-explanatory

101 No Phone Number
Defined error is self-explanatory

102 Failed to Contact error is self-explanatory

103 No Response from
Site error is self-explanatory

104-199 reserved in Sage/DX/
GX error is self-explanatory

128 Invalid Program
Register (DX/GX Only)

The result of accessing program register %P, for example, from the
once-per-second routine (which does not have a %P register).

130 Stack Error (DX/GX
Only

The result of having an excessive number of nested expressions.

131 Invalid Program Code
(DX/GX Only

The result of trying to run a program intended for a different controller
on a GPC platform, or if the GPC executor encountered
unrecognized program logic.

132 Invalid Term (DX/GX
Only

This occurs when a mathematical calculation or function yields a
result (typically a data type) that is not the expected result (e.g., an
unexpected data type). For example, if the result of a mathematical
operation was something other than an unsigned integer (when an
unsigned integer result was expected), an invalid term error would be
generated.

133 Invalid Operator (DX/
GX Only

A math operator that is unsupported was encountered during the
execution of the program code.

134 Invalid State (DX/GX
Only

This occurs if the program code (PCB) or RAM gets corrupted.

146 Invalid Index (DX/GX
Only

A program statement attempted to access a table element whose
index exceeded the size of the table.

Code Trappable Meaning Description

APPENDIX B: SPL ERROR CODES (SAGE, DX, GX)

B-6 SPL User Manual (3/16/2007)

 SPL User Manual (3/16/2007) C-1

Code Trappable Meaning Description

1 Stack Overflow A value larger than the largest value supported by the program
executor was encountered.

2 Stack Underflow A value smaller than the smallest value supported by the program
executor was encountered.

3 Invalid Format String The PLB file is corrupted. The line of SPL is invalid.

4 Invalid Coercion An attempt was made to coerce a variable to an incompatible
datatype.

5 Expression Stack
Overflow Internal SPL Error.

6 Expression Stack
Underflow Internal SPL Error.

7 Invalid Expression
State Internal SPL Error.

8 Invalid PCode The function or statement is invalid. Either the function is
unsupported or the statement was used incorrectly.

9 Invalid Term A reference or attribute has been misused.

10 Not Implemented The function or statement is not implemented in the controller.

11 On Goto The GOTO statement specified a target which is out of range.

12 Bad Reference A reference in the source code is out of range.

13 Invalid Datatype The referenced datatype does not match the datatype being written.

14 Format Mismatch The PLB file is corrupted. The SPL expression does not match the
required parameter format.

15 Invalid Operator A unsupported operator was encountered during the execution of the
program code.

16 Table Read Only An attempt has been made to write to a table which is read only.

17 Nesting Overflow The maximum number of nested expressions has been exceeded.

18 Queue Full The network transmission has been denied due to the transmission
queue being full.

APPENDIX C: SPL ERROR CODES (GPC)
This section includes a list of the SPL error codes that can be generated for a program with #GPC target
platform. Because the GPCs use an updated program executor, the error codes generated are different
than in previous controllers. Each error listed includes a description of the error a well as whether or not
the error is trappable by the compiler’s error handling routines. Many other errors match up with errors
found in the Sage/DX/GX error codes as well.

APPENDIX C: SPL ERROR CODES (GPC)

C-2 SPL User Manual (3/16/2007)

 SPL User Manual (3/16/2007) D-1

Code Digit Format Meaning

FFh (255) ±XXXXXXXXXX. signed 10 digit

FEh (254) XXXXXXXXXX. unsigned 10 digit

FDh (253) ±XXXXXXXXX.X signed 9.1 digit

FCh (252) XXXXXXXXX.X unsigned 9.1 digit

FBh (251) ±XXXXXXXX.XX signed 8.2 digit

FAh (250) XXXXXXXX.XX unsigned 8.2 digit

F9h (249) ±XXXXXXX.XXX signed 7.3 digit

F8h (248) XXXXXXX.XXX unsigned 7.3 digit

F7h (247) ±XXXXXX.XXXX signed 6.4 digit

F6h (246) XXXXXX.XXXX unsigned 6.4 digit

F5h (245) ±XXXXX.XXXXX signed 5.5 digit

F4h (244) XXXXX.XXXXX unsigned 5.5 digit

F3h (243) ±XXXX.XXXXXX signed 4.6 digit

F2h (242) XXXX.XXXXXX unsigned 4.6 digit

F1h (241) ±XXX.XXXXXXX signed 3.7 digit

F0h (240) XXX.XXXXXXX unsigned 3.7 digit

EFh (239) ±XX.XXXXXXXX signed 2.8 digit

EEh (238) XX.XXXXXXXX unsigned 2.8 digit

EDh (237) ±X.XXXXXXXXX signed 1.9 digit

ECh (236) X.XXXXXXXXX unsigned 1.9 digit

EBh (235) ±.XXXXXXXXXX signed .10 digit

EAh (234) .XXXXXXXXXX unsigned .10 digit

E9h (233) channel map one bit per channel

APPENDIX D: PUP DATA TYPES

This Appendix lists the hexadecimal and decimal PUP numeric data type codes. The
hexadecimal codes are followed by h and the decimal codes are provided in parentheses.

APPENDIX D: PUP DATA TYPES

D-2 SPL User Manual (3/16/2007)

E8h (232) bitmap of text one bit per text field

E7h (231) BCD (H/S/M) hours is LSB

E6h (230) BCD (H/M) hours is LSB

E5h (229) packed BCD 8 BCD digits as 4 bytes

E4h (228) BCD date (Y/M/D) MSW is year
LSW/MSB is month

LSW/LSB is day

E3h (227) Binary date MSW is year
LSW/MSB is month

LSW/LSB is day

E2h (226) reserved

E1h (225) reserved

E0h (224) IEEE 754 32-bit floating
point

DFh-00h (223-0) reserved

Code Digit Format Meaning

 SPL User Manual (3/16/2007) E-1

E.1 BACNET DATA TYPES
A BACnet property must have one of the following thirteen possible datatypes. When declaring a property
in your SPL program, you may use either the identifier number associated with the data type or the SPL
data type name.

BACnet Data Type Data Type
Identifier SPL Data Type Reference

Null 0 NULL

Boolean 1 BOOLEAN

Unsigned Integer 2 UNSIGNED

Signed Integer 3 SIGNED

Real 4 REAL

Double 5 DOUBLE

Octet String 6 OCTETSTRING

Character String 7 CHARSTRING

Bit String 8 BITSTRING

Enumerated 9 ENUM

Date 10 DATE

Time 11 TIME

BACnet Object Identifier 12 OBJID

APPENDIX E: BACNET SPL REFERENCE

This section lists the BACnet datatypes and object identifier numbers. Also included are the SPL
keywords that can be used when referencing the datatypes and object identifiers in your SPL programs.

BACNET OBJECTS APPENDIX E: BACNET SPL REFERENCE

E-2 SPL User Manual (3/16/2007)

E.2 BACNET OBJECTS

BACnet Object Type
Object

Identifier
Number

SPL Object Reference

Analog Input 0 AI

Analog Output 1 AO

Analog Value 2 AV

Binary Input 3 BI

Binary Output 4 BO

Binary Value 5 BV

Calendar 6 CAL

Command 7 CMD

Device 8 DE

Event Enrollment 9 EE

File 10 FI

Group 11 GR

Loop 12 LP

Multi-State-Input 13 MSI

Multi-State-Output 14 MSO

Notification Class 15 NC

Program 16 PG

Schedule 17 SC

Average 18 AVG

Multi-State-Value 19 MSV

Trend Log 20 TR

Life Safety Point 21 LSP

Life Safety Point 21 LSP

Life Safety Zone 22 LSZ

Life Safety Zone 22 LSZ

Proprietary
(Occupancy Detector on

ASC)
131 ASCOCCUPANCY

Proprietary
(Proof of Flow on ASC) 131 ASCPROOFOFFLOW

Proprietary
(Occupancy Detector on

ASC)
131 ASCPULSE

Proprietary
(Occupancy Detector on

ASC)
133 ASCECONOMIZER

Proprietary
(PID on ASC) 133 ASCPID

Proprietary
(Input Select on GPC) 240 INPUTSELECT

Proprietary
(Broadcast on GPC) 240 GPCBROADCAST

Proprietary
(Logic on GPC) 243 GPCLOGIC

Proprietary
(Math on GPC) 243 GPCMATH

Proprietary
(Min/Max/Avg on GPC) 243 GPCMINMAXAVG

Proprietary
(Scale on GPC) 247 GPCSCALING

Proprietary
(Piecewise Curve on

GPC)
247 GPCPCURVE

Proprietary
(Schedule on GPC) 249 GPCSCHEDULE

Proprietary
(Floating Point Control

on GPC)
250 GPCMOTORCTRL

Proprietary
(Thermostatic Control on

GPC)
250 GPCTHERMCTRL

Proprietary
(PID Control on GPC) 250 GPCPID

Proprietary
(Digital Output Summary

on GPC)
251 GPCDOSUMMARY

Proprietary
(Occupancy Detector on

GPC)
252 GPCOCCUPANCY

Proprietary
(Analog Output

Summary on GPC)
253 GPCAOSUMMARY

BACnet Object Type
Object

Identifier
Number

SPL Object Reference

APPENDIX E: BACNET SPL REFERENCE BACNET OBJECTS

SPL User Manual (3/16/2007) E-3

Proprietary
(Universal Input

Summary on GPC)
254 GPCUISUMMARY

Proprietary
(Digital Input Summary

on GPC)
254 GPCDISUMMARY

Proprietary
(StatBus on GPC) 255 GPCSTATBUS

BACnet Object Type
Object

Identifier
Number

SPL Object Reference

PROPERTY IDENTIFIERS APPENDIX E: BACNET SPL REFERENCE

E-4 SPL User Manual (3/16/2007)

E.3 PROPERTY IDENTIFIERS

Property Identifier # SPL Property Reference

acked-transitions 0 ACKED_TRANSITIONS

ack-required 1 ACK_REQUIRED

action 2 ACTION

action-text 3 ACTION_TEXT

active-cov-subscriptions 152 ACTIVE_COV_
SUBSCRIPTIONS

active-text 4 ACTIVE_TEXT

active-vt-sessions 5 ACTIVE_VT_SESSIONS

alarm-value 6 ALARM_VALUE

alarm-values 7 ALARM_VALUES

all 8 ALL

all-writes-successful 9 ALL_WRITES_
SUCCESSFUL

apdu-segment-timeout 10 APDU_SEGMENT_
TIMEOUT

apdu-timeout 11 APDU_TIMEOUT

application-software-
version 12 APPLICATION_

SOFTWARE_VERSION

archive 13 ARCHIVE

attempted-samples 124 ATTEMPTED_
SAMPLES

average-value 125 AVERAGE_VALUE

backup-failure-timeout 153 BACKUP_FAILURE_
TIMEOUT

bias 14 BIAS

buffer-size 126 BUFFER_SIZE

change-of-state-count 15 CHANGE_OF_STATE_
COUNT

change-of-state-time 16 CHANGE_OF_STATE_
TIME

client-cov-increment 127 CLIENT_COV_
INCREMENT

configuration-files 154 CONFIGURATION_
FILES

controlled-variable-
reference 19

CONTROLLED_
VARIABLE_
REFERENCE

controlled-variable-units 20 CONTROLLED_
VARIABLE_UNITS

controlled-variable-value 21 CONTROLLED_
VARIABLE_VALUE

cov-increment 22 COV_INCREMENT

cov-resubscription-
interval 128

COV_
RESUBSCRIPTION_
INTERVAL

current-notify-time 129 CURRENT_NOTIFY_
TIME

database-revision 155 DATABASE_REVISION

datelist 23 DATE_LIST

daylight-savings-status 24 DAYLIGHT_SAVINGS_
STATUS

deadband 25 DEADBAND

derivative-constant 26 DERIVATIVE_
CONSTANT

derivative-constant-units 27 DERIVATIVE_C
ONSTANT_UNITS

description 28 DESCRIPTION

description-of-halt 29 DESCRIPTION_OF_
HALT

device-address-binding 30 DEVICE_ADDRESS_
BINDING

device-type 31 DEVICE_TYPE

direct-reading 156 DIRECT_READING

effective-period 32 EFFECTIVE_PERIOD

elapsed-active-time 33 ELAPSED_ACTIVE_
TIME

error-limit 34 ERROR_LIMIT

event-enable 35 EVENT_ENABLE

event-parameters 83 EVENT_PARAMETERS

event-state 36 EVENT_STATE

event-time-stamps 130 EVENT_TIME_STAMPS

event-type 37 EVENT_TYPE

Property Identifier # SPL Property Reference

APPENDIX E: BACNET SPL REFERENCE PROPERTY IDENTIFIERS

SPL User Manual (3/16/2007) E-5

exception-schedule 38 EXCEPTION_
SCHEDULE

fault-values 39 FAULT_VALUES

feedback-value 40 FEEDBACK_VALUE

file-access-method 41 FILE_ACCESS_
METHOD

file-size 42 FILE_SIZE

file-type 43 FILE_TYPE

firmware-version 44 FIRMWARE_REVISION

high-limit 45 HIGH_LIMIT

inactive-text 46 IN_PROCESS

in-process 47 INACTIVE_TEXT

instance-of 48 INSTANCE_OF

integral-constant 49 INTEGRAL_CONSTANT

integral-constant-units 50 INTEGRAL_
CONSTANT_UNITS

issue-
confirmednotifications 51 ISSUE_CONFIRMED_

NOTIFICATIONS

last-restore-time 157 LAST_RESTORE_TIME

life-safety-alarm-values 166 LIFE_SAFETY_ALARM_
VALUES

limit-enable 52 LIMIT_ENABLE

list-of-group-members 53 LIST_OF_GROUP_
MEMBERS

list-of-object-property-
references 54

LIST_OF_OBJECT_
PROPERTY_
REFERENCES

list-of-session-keys 55 LIST_OF_SESSION_
KEYS

local-date 56 LOCAL_DATE

local-time 57 LOCAL_TIME

location 58 LOCATION

log-buffer 131 LOG_BUFFER

log-device-object-
property 132 LOG_DEVICE_

OBJECT_PROPERTY

log-enable 133 LOG_ENABLE

Property Identifier # SPL Property Reference

log-interval 134 LOG_INTERVAL

low-limit 59 LOW_LIMIT

maintenance-required 158 MAINTENANCE_
REQUIRED

manipulated-variable-
reference 60

MANIPULATED_
VARIABLE_
REFERENCE

max-apdu-length-
accepted 62 MAX_APDU_LENGTH_

ACCEPTED

maximum-output 61 MAXIMUM_OUTPUT

maximum-value 135 MAXIMUM_VALUE

maximum-value-
timestamp 149 MAXIMUM_VALUE_

TIMESTAMP

max-info-frames 63 MAX_INFO_FRAMES

max-master 64 MAX_MASTER

max-pres-value 65 MAX_PRES_VALUE

max-segments-accepted 167 MAX_SEGMENT_
ACCEPTED

member-of 159 MEMBER_OF

minimum-off-time 66 MINIMUM_OFF_TIME

minimum-on-time 67 MINIMUM_ON_TIME

minimum-output 68 MINIMUM_OUTPUT

minimum-value 136 MINIMUM_VALUE

minimum-value-
timestamp 150 MINIMUM_VALUE_

TIMESTAMP

min-pres-value 69 MIN_PRES_VALUE

mode 160 MODE

model-name 70 MODEL_NAME

modification-date 71 MODIFICATION_DATE

notification-class 17 NOTIFICATION_CLASS

notification-threshold 137 NOTIFICATION_
THRESHOLD

notify-type 72 NOTIFY_TYPE

number-of-APDU-retries 73 NUMBER_OF_APDU_
RETRIES

Property Identifier # SPL Property Reference

PROPERTY IDENTIFIERS APPENDIX E: BACNET SPL REFERENCE

E-6 SPL User Manual (3/16/2007)

number-of-states 74 NUMBER_OF_STATES

object-identifier 75 OBJECT_IDENTIFIER

object-list 76 OBJECT_LIST

object-name 77 OBJECT_NAME

object-property-
reference 78 OBJECT_PROPERTY_

REFERENCE

object-type 79 OBJECT_TYPE

operation-expected 161 OPERATION_
EXPECTED

optional 80 OPTIONAL

out-of-service 81 OUT_OF_SERVICE

output-units 82 OUTPUT_UNITS

polarity 84 POLARITY

present-value 85 PRESENT_VALUE

previous-notify-time 138 PREVIOUS_NOTIFY_
TIME

priority 86 PRIORITY

priority-array 87 PRIORITY_ARRAY

priority-for-writing 88 PRIORITY_FOR_
WRITING

process-identifier 89 PROCESS_IDENTIFIER

profile-name 168 PROFILE_NAME

program-change 90 PROGRAM_CHANGE

program-location 91 PROGRAM_LOCATION

program-state 92 PROGRAM_STATE

proportional-constant 93 PROPORTIONAL_
CONSTANT

proportional-constant-
units 94 PROPORTIONAL_

CONSTANT_UNITS

protocol-conformance-
class 95

PROTOCOL_
CONFORMANCE_
CLASS

protocol-object-types-
supported 96 PROTOCOL_OBJECT_

TYPES_SUPPORTED

protocol-revision 139 PROTOCOL_REVISION

Property Identifier # SPL Property Reference

protocol-services-
supported 97

PROTOCOL_
SERVICES_
SUPPORTED

protocol-version 98 PROTOCOL_VERSION

read-only 99 READ_ONLY

reason-for-halt 100 REASON_FOR_HALT

recipient 101 RECIPIENT

recipient-list 102 RECIPIENT_LIST

record-count 141 RECORD_COUNT

records-since-notification 140 RECORDS_SINCE_
NOTIFICATION

reliability 103 RELIABILITY

relinquish-default 104 RELINQUISH_DEFAULT

required 105 REQUIRED

resolution 106 RESOLUTION

segmentation-supported 107 SEGMENTATION_
SUPPORTED

setpoint 108 SETPOINT

setpoint-reference 109 SETPOINT_
REFERENCE

setting 162 SETTING

silenced 163 SILENCED

start-time 142 START_TIME

state-text 110 STATE_TEXT

status-flags 111 STATUS_FLAGS

stop-time 143 STOP_TIME

stop-when-full 144 STOP_WHEN_FULL

system-status 112 SYSTEM_STATUS

time-delay 113 TIME_DELAY

time-of-active-time-reset 114 TIME_OF_ACTIVE_T
IME_RESET

time-of-state-count-reset 115 TIME_OF_STATE_
COUNT_RESET

Property Identifier # SPL Property Reference

APPENDIX E: BACNET SPL REFERENCE PROPERTY IDENTIFIERS

SPL User Manual (3/16/2007) E-7

time-synchronization-
recipients 116

TIME_
SYNCHRONIZATION_
RECIPIENTS

total-record-count 145 TOTAL_RECORD_
COUNT

tracking-value 164 TRACKING_VALUE

units 117 UNITS

update-interval 118 UPDATE_INTERVAL

utc-offset 119 UTC_OFFSET

valid-samples 146 VALID_SAMPLES

variance-value 151 VARIANCE_VALUE

vendor-identifier 120 VENDOR_IDENTIFIER

vendor-name 121 VENDOR_NAME

vt-classes-supported 122 VT_CLASSES_
SUPPORTED

weekly-schedule 123 WEEKLY_SCHEDULE

window-interval 147 WINDOW_INTERVAL

window-samples 148 WINDOW_SAMPLES

zone-members 165 ZONE_MEMBERS

Property Identifier # SPL Property Reference

PROPERTY IDENTIFIERS APPENDIX E: BACNET SPL REFERENCE

E-8 SPL User Manual (3/16/2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

